Skip To Main Content
Giving Contact
  • Aerospace
  • Biological & Agriculture
  • Biomedical
  • Chemical
  • Civil & Environmental
  • Computer Science & Engineering
  • Electrical & Computer
  • Engineering Technology & Industrial Distribution
  • Industrial & Systems
  • Materials Science & Engineering
  • Mechanical
  • Nuclear
  • Ocean
  • Petroleum
  • Prospective Students
  • Current Students
  • Faculty & Staff
  • Former Students
Texas A&M University Engineering
  • Giving
  • Contact
  • About Us
  • The Vice Chancellor and Dean
  • Facts and Figures
  • News
  • News feed
  • Contact Us
Zachry building
Zachry Engineering Education Complex
Explore all that our state-of-the-art Zachry building has to offer.
  • Academics
  • Degree Programs
  • Engineering Academies
  • Find an Advisor
  • Engineering Global Programs
  • Graduate Program
  • Undergraduate Program
  • Labs
Graduate student working on Dell laptop
Engineering Online

Explore degrees available through the No. 1 online graduate program in Texas. Study online to earn the same quality degree as on campus.

  • Admissions and Aid
  • Schedule a Visit
  • Find an Advisor
Two students working on equations on a white board. One student pointing at a white board with eligible text, equations and diagrams while another closely observes
How to Apply
Get information on the application process and funding opportunities for undergraduate, graduate and transfer students. 
  • Student Life
  • Find Your Community
  • Get Creative
  • Interact with Industry
  • Solve Problems
  • ENGR[X]
  • Zachry Engineering Education Complex
  • SuSu and Mark A. Fischer '72 Engineering Design Center
Texas A&M University Engineering 5 student holding each others shoulders holding a check Aggies Invent Solving Problems in 48 hours pay to the order of Second Place Winner Seven Hundred and Fifty Even Dollars Engineering Innovation Center
Aggies Invent

Learn more about this 48-hour intensive design experience.

  • Research
  • Seminars
  • Autonomy and Robotics
  • Education and Training Research
  • Energy Systems and Services Research
  • Health Care Research
  • Infrastructure Research
  • Materials and Manufacturing Research
  • National Security and Safety Research
  • Partner With Us
  • Industry
  • Donors
  • PK-12 and Educators
  • Researchers
  • Volunteers
  • Contact Us
Texas A&M University in the background with seven students with their thumbs up holding a sign that says Future Aggie Engineers and Engineering Texas A&M University
PK-12 Outreach Spark!
Students and organizations can bring hands-on activities or design challenges to your location or just visit as guest speakers.
  • Home
  • News
  • Cutting through the noise: Researchers use soundwaves to better diagnose cancer

Cutting through the noise: Researchers use soundwaves to better diagnose cancer

April 3, 2019 By Hannah Conrad

Hannah Conrad
Communications Specialist I
haconrad@tamu.edu
979-458-5771
  • Faculty Research
  • Research
  • Electrical and Computer Engineering
  • Faculty
  • Featured
Dr. Arum Han and Dr. Han Wang
Dr. Arum Han and Dr. Han Wang | Image: Dr. Han Wang

Cancer research, much like the disease itself, starts with living cells.

While we know that the chemical makeup of cancerous cells can differ, in the past decade, variations in their mechanical properties have stolen the spotlight. However, collecting information about the mechanical properties of cancer cells has proven to be a challenge for researchers due to the complex design and operation of current cellular measurement technology. Especially when such measurements have to be done one tiny cell at a time.

In order to simplify and cut the cost of such devices, a team of researchers at Texas A&M University has created an acoustofluidic cytometer that uses sound waves to measure the stiffness and compressibility of cancer cells. This not only will aid in the classification of cancer types, but will also make diagnosis more efficient and observable.

The team is led by Dr. Arum Han, professor and Presidential Impact Fellow in the Department of Electrical and Computer Engineering at Texas A&M, and Dr. Han Wang, professor at Tsinghua University. Their recent publication in the journal Lab on a Chip was featured in an article on PhysicsWorld.

So why is it important to understand the biophysical properties of cancer cells?

Characteristics that set these cells apart from their healthy counterparts offer insight into the disease that is invaluable to the future of cancer research.

“For example, if you're trying to figure out if a biopsy contains cancer cells or not, you might be able to look at the mechanical properties of the cells to determine if cancer is present in the sample,” said Han.

Han and Wang's cytometer
The researchers' cytometer uses sound waves to measure mechanical characteristics of cancer cells | Image: Dr. Han Wang

He went on to explain another scenario: how the biophysical properties of cancerous cells change as they advance through stages and metastasize.

“One hypothesis is that as cancer cells progress, they become softer, which makes it easier for them to circulate and spread inside a human body,” said Han. “So if a late stage cancer has an identifiably different biophysical property than earlier stages, it could be possible to tell what stage a cancer is in by simply measuring the mechanical property of cell types. This could be used to quantify the stages of cancer.”

While many microfluid devices use pushing mechanisms and microstructures to measure the compressibility and stiffness of cancer cells, Han’s acoustofluidic cytometer utilizes soundwaves.

Acoustic waves traveling in a rectangular microfluidic channel form a “standing wave,” which creates zones called acoustic pressure nodes. Cells flowing inside the channel will move toward and gather near these pressure nodes. The speed at which the cells move varies depending on how soft or firm they are, revealing their compressibility and stiffness without the need for any complex mechanisms.

By observing how cancer cells react under the influence of acoustic soundwaves, researchers can gain insight about the cells’ mechanical properties, which can then be correlated to different stages of cancer.

“The simplicity of our device and its operation is what makes this particular work very exciting compared to previous methods of measurement, which require very expensive equipment or very complicated microstructures to work,” said Han.

  • Faculty Research
  • Research
  • Electrical and Computer Engineering
  • Faculty
  • Featured
 
Engineering Texas A&M University
Texas A&M University College of Engineering, 3127 TAMU,
College Station, TX   77843-3127 ( ZACH)
  • easa@tamu.edu
  • (979) 845-7200
  • Staff Directory
  • Site Map
  • Site Policies
  • About this Site
  • Employment
Follow Us:
Facebook Twitter LinkedIn Instagram YouTube
  • The College of Engineering is a member of Texas A&M University
  • Texas A&M Engineering is a member of The Texas A&M University System

Copyright © 2019, Texas A&M Engineering Communications, All Rights Reserved

  • State of Texas
  • Texas Homeland Security
  • Open Records
  • Risk, Fraud, & Misconduct Hotline
  • Statewide Search
  • Texas CREWS
  • Environmental Health, Safety, & Security