Skip To Main Content
Graduate student working on Dell laptop

Explore degrees available through the No. 1 online graduate program in Texas. Study online to earn the same quality degree as on campus.

Two students working on equations on a white board with eligible text on it

Get information on the application process and funding opportunities for undergraduate, graduate and transfer students.

Ingenium blogger posing with fellow organization leaders with Aggie ring
Ingenium Our blog by students, for students

Get inspired by experiences and opportunities shared by fellow engineering students.

Students with thumbs up holding Future Aggie Engineers and Engineering Texas A&M University signs
PK-12 Outreach Spark!

Students and organizations can bring hands-on activities or design challenges to your location or just visit as guest speakers.

A photo of research conducted in Dr. Akhilesh Gaharwar and his team to develop a new platform to form blood vessels.
A photo of research conducted by Dr. Akhilesh Gaharwar and his team to develop a new platform to form blood vessels. | Image: Texas A&M Engineering

Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed a clay-based platform to deliver therapeutic proteins to the body to assist with the formation of blood vessels. 

The team is led by members of the Inspired Nanomaterials and Tissue Engineering Lab in the Department of Biomedical Engineering. They have developed technology that introduces a new type of two-dimensional clay, also known as nanosilicates, that delivers multiple specialized proteins called growth factors into the body to stimulate new blood vessel formation. To allow blood vessels time to form, the clay is designed to prolong the release through its high surface area and charged characteristics, according to biomedical engineering assistant professor Dr. Akhilesh K. Gaharwar.

"Clay nanoparticles work like tiny weak magnets that hold the growth factors within the polymeric hydrogels and release very slowly," Gaharwar said. "Sustained and prolonged release of physiologically relevant doses of growth factors are important to avoid problems due to high doses, such as abrupt tissue formation."

Co-investigator Dr. Kayla Bayless from the Department of Molecular and Cellular Medicine in the Texas A&M College of Medicine said the clay also keeps the growth factors organized, preventing abnormal growth and moderating activity of surrounding cells.

Gaharwar said by establishing clay nanoparticles as a platform technology for delivering the growth factors, the research will have a significant impact on designing the next generation of bioactive scaffolds and implants.

The research was recently published in Advanced Biosystems and is funded by the Division of Chemical, Bioengineering, Environmental and Transport Systems of the National Institute of Science, the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health and by the National Science Foundation.