Spacecraft Telecommunication Systems – Part 1/2

The Transmission and Reception of Data and Commands

D. B. Kanipe
March 1, 2012
Introduction (1/2)

- Long range (hundreds of billions of kilometers)
- Potentially large relative velocity between transmitter and receiver
 - Doppler shift
 - Receivers may require frequency-tracking loops
- Limited coverage – assume a 300km orbit
 - One ground station that can track at 5° above horizon
 - ~6.5 minutes at best, even for a zenith pass
- Spacecraft can acquire voluminous amounts of data
- Data downlink: many fewer opportunities
 - Therefore, downlink rate >> acquisition rate
- Earth’s troposphere and ionosphere absorb energy
Introduction (2/2)

- **Hardware**
 - Typically, power, mass, and volume limits
 - Led to the development of low power, low mass electronics

- **Environmental stresses**
 - Mechanical shock
 - Acoustic and vibration
 - Radiation
 - Thermal extremes
 - Choice of internal location
 - Antenna design

- Telecommunications interfaces – directly or indirectly – with every other spacecraft subsystem
Command System (1/2)

- Allows instructions and data to be sent to the spacecraft
 - Immediate action, or
 - Stored and executed later

- Command types
 - Relay commands
 - Like a switch closure; simply on/off
 - Initiate a complex operational sequence
 - Data commands
 - Provide data upon which the spacecraft acts
 - Data commands have a particular structure
 - Complex operations may require many data commands
 - May also require relay commands to configure the spacecraft
 - Need to consider ground station visibility
 - Autonomous mission management
Command System (2/2)

- Hardware components
 - Bipolar transistors
 - Use the most power, but resistant to radiation
 - n-type metal oxide semiconductors (NMOS)
 - Complementary metal oxide semiconductors (CMOS)
 - Higher speed and low power consumption
 - More sensitive to radiation
 - Radiation hardening
 - Often required
 - Radiation causes degradation long-term
 - Shielding has limited effect
 - Shields low energy particles
 - High energy particles do the damage

- Radiation hardening
 - Often required
 - Radiation causes degradation long-term
 - Shielding has limited effect
 - Shields low energy particles
 - High energy particles do the damage
Hardware Redundancy

- Simplest
 - Two completely parallel systems
 - Not practical or foolproof

- More sophisticated
 - Redundancy at the subsystem level
 - Cross-strapping: a given subassembly can be powered by multiple strings

- Redundancy management
 - A science unto itself
 - Pitfalls
 - Irreversible switchovers
 - Untested modes
 - Is the system truly redundant?
Autonomy

- Made possible by increasing computer power and denser memory
- Allows the use of high level commands instead of detailed command sequences
 - EG, : “Apply x\Delta V in a certain direction”
 - Computer autonomously computes and executes the command
- More complex
 - Larger variety of spacecraft states and modes
 - Impossible to test every conceivable mode
 - Requires very thoughtful design
 - Usually means more test time in the schedule
- Mars Polar Lander
Command Subsystem Elements

- Antenna
- Receiver
- Modulation
- Command processor
- Telemetry subsystem
- Onboard processors
- Onboard storage
- Modulation methods
Command System Block Diagram

Receiver → Command Processor → Power Switching Unit → Spacecraft Systems

Command Decoder

Clock → Onboard Computer → Onboard Storage
Antennas

- For LEO missions, uplink antenna will normally be omnidirectional, low gain
 - Easier to communicate with a moving spacecraft
 - Constantly changing aspect angle

- Deep space missions require directional, high gain antennas
Receivers

- Amplifies and demodulates the signal, filters out noise and EMI, and sends the information on to command decoder and processor
- Tuned radio frequency (TRF)
 - Radio frequency amplifier
 - Tuned for a specific frequency
- Superheterodyne
 - Received signal is shifted to a lower frequency than that at which it was transmitted
 - Two or three shifts are common
 - Signal is amplified and filtered at each stage
 - More sensitive to weak signals
 - Allows better rejection of unwanted signals
Modulation

- Types of modulation
 - Amplitude modulation (AM)
 - Frequency modulation (FM)
 - Phase modulation (PM)

- Trade space
 - Signal-to-noise ratio (SNR)
 - Graceful degradation
 - Available RF bandwidth
 - Data rate
 - Compatibility with ground station

- FM and PM
 - Can operate at a lower SNR
 - Require greater bandwidth
 - Suffer from threshold effect

- AM
 - Requires high SNR
 - Doesn’t suffer from threshold effect

- Electromagnetic interference (EMI)
 - Can drive frequency selection to avoid EMI
Command Processor

- Functional block of code in a multipurpose processor
- Interprets commands
- Checks commands for validity
 - Parity bits
 - Error detection and correction (EDAC) schemes
- Today’s central processor is a coordinator
 - Allows for a distributed architecture
 - Equal or more computational power in subsystems
Telemetry

Function
- Prepares data for transmission to the ground
 - Spacecraft health information
 - Experimental results
 - Observations

Signal conditioning
- Make data acceptable to telemetry system
 - Amplification
 - Attenuation
 - Filters remove bias and noise
 - Notch filters remove high intensity signals at specific frequencies
 - Dynamic range compression (compatible with telemetry system)
 - Analog-to-digital conversion (ADC)
 - Will be errors in the ADC and in the ultimate DAC
 - A noisy signal can fool the ADC
 - Digital quantization can result in data falling between quantization levels
Multiplexing

- Required if processing more than one type of data

Types of multiplexing

- Frequency-division multiplexing (FDM)
 - Allocates the various data streams to separate portions of the bandwidth

- Time-division multiplexing (TDM)
 - Assigns sets of bits from different data streams within a data frame as a function of time

- Code-division multiplexing
 - Data is sent in parallel over the same bandwidth, but encoded
Aliasing

- Artifact of poor data reconstruction
- Nyquist rate
 - A signal must be sampled at twice the maximum frequency contained in the signal
 - In practice, a factor of two is too low
 - A sampling factor of five or greater is more realistic
Onboard Processors

- Early onboard “computers” were basically timers
- Spacecraft have benefitted from the increasing computing power and storage capability evolving from the computer industry
- Distributed systems are the norm today
 - Central computer coordinates and directs traffic
 - Subsystem microprocessors are equally as powerful as the central processor
- The environment of space is a burden
 - Thermal extremes and cycling
 - Hard vacuum
 - Vibration
 - EMI
- Not surprisingly, less computer power costs more
- Parts
 - Space qualified (class S)
 - Expensive
 - Long delivery times
 - Class B parts
 - Functionally equivalent to class S without the screening and burn-in
 - Radiation hardness
Onboard Storage

- Data storage on the ground has steadily gotten denser and cheaper (MB/$)

- Space applications are different
 - Radiation
 - Temperature extremes
 - Desire to avoid moving parts
 - Lack of human interaction

- Overwhelming choice: solid-state memory
 - Evolving rapidly
 - Adequate systems are readily available
 - 2 Tb with 10 I/O channels, radiation hardened
Modulation

- Method used to encode a “baseband” information bearing signal upon an RF carrier signal, $S(t)$

 \[S(t) = A(t)\cos[\omega(t) + \Phi(t)] \]

 - $A =$ amplitude
 - $\omega =$ frequency
 - $\Phi =$ phase angle

- Modulation schemes
 - AM varies amplitude (rarely used)
 - FM varies frequency
 - PM varies phase

- PCM – pulse code modulation
 - Samples the signal and quantizes it
 - Formed into a serial binary bit stream
 - Digital bit stream “keys” the carrier to represent a 1 or a 0
 - Amplitude-shift, frequency-shift, or phase-shift
 - BASK, BFSK, BPSK