Overview
Program Overview

Coastal and ocean engineering is the application of basic engineering principles to the analysis, design, construction, and management of systems that operate in the ocean environment. It is a hybrid technical area utilizing techniques from many branches of engineering. Typical coastal and ocean engineering application areas include: beach protection and nourishment, coastal structures, coastal erosion, development of ocean energy resources, instrumentation for coastal and offshore measurements, marine dredging and dredged material placement, moored and towed systems, ocean mining, offshore petroleum recovery, offshore structures, ports and harbors, search and salvage, suspended and dissolved constituent transport, subsea pipelines and cables, submersible vehicles, and underwater acoustics. Students receive hands-on experience in the classroom and in our world-class laboratory facilities, which include the Reta and Bill Haynes `46 Coastal Engineering Laboratory, Offshore Technology Research Center, Civil Engineering Laboratory Building, and the Hydromechanics Laboratory.

Research areas of our faculty include:

- Analysis and design of coastal structures
- Beach nourishment
- Bridge scour
- Coastal engineering processes
- Coastal zone management
- Computational ship and submarine hydrodynamics
- Dredging technology
- Environmental fluid mechanics
- Floating breakwaters
- Hydroelasticity
- Internal waves
- Laboratory measurement and analysis techniques
- Mooring analysis and design
- Multiphase flow and direct ocean carbon sequestration
- Non-linear wave/structure/wake interactions
- Offshore structures
- Ocean renewable energy technologies
- Remote sensing of ocean surface
- Sediment dynamics
- Shallow flows
- Tsunami propagation and runup
- Turbulence modeling
- Underwater life support and diving technology
- Unsteady three-dimensional Navier-Stokes equations
- Wave and current interaction
- Wave breaking
- Wind wave evolution from deep to shallow water
Faculty Members

Administration

Interim Department Head:
John Niedzwecki
Assoc. Dept. Heads:
Jose Roesset, Roger Smith
Division Head:
Jun Zhang

Coastal & Ocean Engineering Division Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang, Kuang-An</td>
<td>979-845-4504</td>
<td>kchang@civil.tamu.edu</td>
</tr>
<tr>
<td>Chen, Hamn-Ching</td>
<td>979-847-9468</td>
<td>hcchen@civil.tamu.edu</td>
</tr>
<tr>
<td>Falzarano, Jeffrey</td>
<td>979-862-7942</td>
<td>jfalzarano@civil.tamu.edu</td>
</tr>
<tr>
<td>Irish, Jennifer</td>
<td>979-845-4586</td>
<td>jirish@civil.tamu.edu</td>
</tr>
<tr>
<td>Kaihatu, James</td>
<td>979-862-3511</td>
<td>jkaihatu@civil.tamu.edu</td>
</tr>
<tr>
<td>Kim, Cheung Hun</td>
<td>979-862-5187</td>
<td>chkim@civil.tamu.edu</td>
</tr>
<tr>
<td>Kim, Moo-Hyun</td>
<td>979-847-8710</td>
<td>m-kim3@tamu.edu</td>
</tr>
<tr>
<td>Lynnett, Patrick</td>
<td>979-862-3627</td>
<td>plynnett@civil.tamu.edu</td>
</tr>
<tr>
<td>Mercier, Richard</td>
<td>979-458-1107</td>
<td>rsmercier@tamu.edu</td>
</tr>
<tr>
<td>Randall, Robert</td>
<td>979-845-4568</td>
<td>r-randall@tamu.edu</td>
</tr>
<tr>
<td>Socolofsky, Scott</td>
<td>979-845-4517</td>
<td>socolofs@tamu.edu</td>
</tr>
<tr>
<td>Zhang, Jun</td>
<td>979-845-2168</td>
<td>jzhang@civil.tamu.edu</td>
</tr>
</tbody>
</table>
Degree Programs

The Ocean Engineering Program offers three graduate degrees; Master of Engineering, Master of Science and Doctor of Philosophy. The Ocean Engineering Program is also a participant in the Doctor of Engineering degree.
Degree of Master of Engineering

The Master of Engineering degree requires minimum of 30 credit hours and a written project report in addition to the requirements necessary to meet the program pre-requisites: The university places limitations on these credit hours in addition to the requirements of the Ocean Engineering Program that are listed below. A complete discussion of all university requirements is found in the current Texas A&M University Graduate Catalog (available on the Internet at http://www.tamu.edu/admissions/catalogs/) under the heading “The Degree of Master of Engineering.”

Required courses:

OCEN 678 Fluid Dynamics for Ocean and Environ. Engineering 3.0

OCEN 671 Ocean Wave Mechanics 3.0

OCEN 681 Seminar (every semester in residence) 1.0

OCEN 685 Research Project Report (minimum) 3.0

MATH 601 Higher Math. for Engrs. and Physicists I 3.0

Select two courses from:

OCEN 672 Coastal Engineering 3.0

OCEN 676 Dynamics of Offshore Structures 3.0

OCNG 608 Physical Oceanography 3.0
A. Advising Committee

The Master of Engineering program has a standard advisory committee. This committee has two departmental members. No external members are required for this degree plan.

B. Prerequisites

The pre-requisite for the Ocean Engineering Graduate Program is that a degree candidate has a Bachelor’s Degree in an engineering discipline. Student-specific pre-requisite requirements may also be imposed by the faculty for students with a weak background in the basics of ocean engineering (such as dynamics, fluid mechanics, and mechanics of materials).

C. Degree Plan

The proposed degree plan must be typed on the official form as it appears on the Internet at http://ogs.tamu.edu/ and submitted electronically to your graduate advisor and advisory committee for their electronic endorsement. Master of Engineering students are expected to submit their degree plan within 1 month of starting their coursework.

1. Standard Degree Plan – ME Students Starting Fall

Fall Semester (12 hours)
- OCEN 678 Fluid Dynamics for Ocean & Environmental Engr. (R)
- OCEN 671 Ocean Wave Mechanics (R)
- MATH 601 Higher Math. I (R)
- OCEN 685 (2) (R)
- OCEN 681 Seminar

Spring Semester (12 hours)
- Select 2 courses from OCEN 672, OCEN 676, OCNG 608 (R)
- Select 2 Electives

Summer (6 hours)
- Select 1 Elective
- OCEN 685 (3) (R)
D. Writing Requirement and Waiver of Final Exam

The University has a writing requirement for all graduate degrees. You will be writing a report as part of the *OCEN 685 Directed Studies course* that will be used to satisfy this requirement. At the same time you submit your report(s), you should submit your request for the Waiver of Final Exam form, which is available online through Office of Graduate Studies. Once your report has been reviewed and certified to meet the writing requirements, the waiver form will be signed.

You must provide a minimum of 2 weeks for the review of the report and for the form to be signed. It is your responsibility to ensure enough time is provided in order to meet the deadlines by the university’s Office of Graduate Studies (http://ogs.tamu.edu/).
Degree of Master of Science

The Master of Science degree requires a minimum of 32 credit hours and a thesis in addition to the requirements necessary to meet the program pre-requisites: The university places limitations on these credit hours in addition to the requirements of the ocean engineering program that are listed below. A complete discussion of all university requirements is found in the current Texas A&M University Graduate Catalog (available on the Internet at http://www.tamu.edu/admissions/catalogs/) under the heading “The Degree of Master of Science.” For example, university requirements include a final examination and submission of a thesis to the university.

Required courses:

OCEN 678 Fluid Dynamics for Ocean and Environ. Engineering 3.0
OCEN 671 Ocean Wave Mechanics 3.0
OCEN 681 Seminar (every semester in residence) 1.0
OCEN 691 Research (toward MS Degree) 6.0
MATH 601 Higher Math. for Engrs. and Physicists I 3.0

Select two courses from:

OCEN 672 Coastal Engineering 3.0
OCEN 676 Dynamics of Offshore Structures 3.0
OCNG 608 Physical Oceanography 3.0

A. Degree Plan

The student must identify their research supervisor before the start of their second semester of study, at which point an advisory committee will be formed. The student’s advisory committee, in consultation with the student, will develop the proposed degree plan. The proposed degree plan must be typed on the official form as it appears on the Internet at http://ogs.tamu.edu/ and submitted electronically to your graduate advisor and advisory committee for their electronic endorsement. The office of graduate studies blocks students from further registration if a degree plan is not filed before the end of their second semester of study. If you are blocked, you are not considered a full time student and become ineligible to receive any assistantship.
B. Advising Committee

The Master of Science program has a standard advisory committee. This committee consists of two departmental members and one external member.

C. Prerequisites

The pre-requisite for the Ocean Engineering Graduate Program is that a degree candidate has a Bachelor’s Degree in an engineering discipline. Student-specific pre-requisite requirements may also be imposed by the faculty for students with a weak background in the basics of ocean engineering (such as dynamics, fluid mechanics, and mechanics of materials).
Doctor of Philosophy

Students are formally admitted to the Doctor of Philosophy (PhD) Program after passing a written and oral General Exam to be taken at the end of the first semester of PhD studies. The PhD degree requires a minimum of 64 credit hours beyond the Master’s Degree and a dissertation in addition to the requirements necessary to meet the program pre-requisites. Of the 64 credit hours, 24 hours must be in coursework. To complete the coursework for the PhD, six credits must be selected in the area of mathematics, statistics and numerical methods and three credit hours in the area of fluid mechanics in addition to the requirements for the Master’s degree.

The university places limitations on these credit hours in addition to the requirements of the Department of Civil Engineering and the Ocean Engineering Program listed below.

A complete discussion of all university requirements is found in the current Texas A&M University Graduate Catalog (available on the Internet at http://www.tamu.edu/admissions/catalogs/) under the heading “The Degree of Doctor of Philosophy.” For example, university requirements include a preliminary examination, a final examination, and submission of a dissertation to the university.

NOTE: All documents requiring departmental signatures must be submitted to the Civil Engineering Graduate Office at least one day prior to the Office of Graduate Studies deadline.

Required courses:

MATH 602 Methods and App. of Partial Differential Eqns. 3.0
OCEN 681 Seminar (every semester in residence) 1.0
Three more credit hours in mathematics, statistics or numerical methods
Three more credit hours in fluid mechanics
Satisfy the course requirements of the Master of Science
A. Ocean Engineering Program Requirements

The student must also satisfy the following area requirements and/or recommendations described below:

- **Qualifying Exam**: A Qualifying Examination will be scheduled with members of the Ocean Engineering faculty. The exam will include both written and oral components. The exam should be taken after the first semester (Fall or Spring) of study and no later than the end of the second semester (Fall or Spring) of study. In the Ocean Engineering Program, the written component is typically taken the week before the second semester of study.

- **Degree Plan**: An advisory committee must be formed and a Degree Plan must be submitted and approved by the advisory committee after passing the Qualifying Exam and before course registration during their second semester (Fall or Spring) of study. The committee consists of three departmental members and one external member. The proposed degree plan must be typed on the official form as it appears on the Internet at http://ogs.tamu.edu/ with endorsements by the student’s advisory committee.

- **Written Preliminary Exam**: After completion of the coursework listed on the Degree Plan (with the exception of OCEN 691 Research), a Written Preliminary Examination, if not waived, will be scheduled with members of the advisory committee. This exam consists of written questions from the advisory committee. The exam in total should be given over a period of one week.

- **Research Proposal**: As soon as the research project can be outlined in reasonable detail, the dissertation research proposal should be completed. The Research Proposal shall describe the proposed research, including relevant background information, and clearly demonstrate how this research will make a unique contribution of new knowledge to the student’s area of study. Upon approval of the Research Proposal by the advisory committee chair, the Research Proposal must be submitted to other members of the advisory committee at least 2 weeks (10 working days) prior to the Oral Preliminary Exam.

- **Oral Preliminary Exam**: After passing the Written Preliminary Exam, an Oral Preliminary Examination will be scheduled with members of the advisory committee. At this examination, the student will give a presentation of the Research Proposal. The
questions in this exam will cover the Written Preliminary Exam, the Oral Preliminary Exam presentation, and any relevant coursework.

- **Completion of Dissertation:** Upon approval of the Dissertation by the advisory committee chair, the Dissertation will be submitted to the other members of the advisory committee at least 2 weeks (10 working days) prior to the Final Defense.

- **Final Defense:** A Final Defense consisting of an oral examination will be scheduled with all of the advisory committee members. At this examination, the student will give a presentation of the research work completed for the degree and documented in the Dissertation. The student is encouraged to invite other interested individuals to the research presentation.

B. Recommended Coursework:

COASTAL AND OCEAN ENGINEERING DIVISION GRADUATE COURSES

Courses Taught by the Ocean Engineering Faculty

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Frequency (per year)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 671 Ocean Wave Mechanics</td>
<td>M/PhD</td>
<td>1</td>
<td>Required</td>
</tr>
<tr>
<td>OCEN 672 Coastal Engineering</td>
<td>M/PhD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OCEN 673 Nonlinear Hydrodynamics Problems in Ocean Engineering</td>
<td>PhD</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>OCEN 674 Ports and Harbors</td>
<td>M/PhD</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>OCEN 676 Dynamics of Offshore Structures</td>
<td>M/PhD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OCEN 678 Fluid Dynamics for Ocean and Environmental Engineering</td>
<td>M/PhD</td>
<td>1</td>
<td>Required</td>
</tr>
<tr>
<td>OCEN 681 Ocean Engineering Seminar</td>
<td>M/PhD</td>
<td>2</td>
<td>Required</td>
</tr>
<tr>
<td>OCEN 682 Coastal Sediment Processes</td>
<td>PhD</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>OCEN 683 Estuary Hydrodynamics</td>
<td>PhD</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>OCEN 688 Marine Dredging</td>
<td>M/PhD</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>OCEN 689 Nonlinear Wave Mechanics</td>
<td>PhD</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>OCEN 689 Environmental Fluid Mechanics</td>
<td>PhD</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>CVEN 688 Computational Fluid Dynamics</td>
<td>M/PhD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CVEN 679 Experimental Fluid Mechanics Modeling</td>
<td>PhD</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>
Notation: 1 means taught once per year, 2/3 means taught once every three semesters, 1/2 means taught once every two years, and 1/3 means taught once every three years.

Other Suggested CVEN Courses

CVEN 645 Geotechnical Site Investigation

CVEN 655 Structural Reliability

CVEN 686 Offshore and Coastal Structures

CVEN 687 Foundation Engineering

Other Suggested MATH and STAT Courses

MATH 601 Higher Mathematics for Engineers and Physicists 1 (Required)

MATH 602 Methods and Applications of Partial Differential Equations (Required for PhD)

STAT 601 Statistical Analysis

Other Suggested Courses

MEEN 636 Turbulence: Theory and Engineering Applications

OCNG 608 Physical Oceanography

OCNG 689 Data Methods and Graphical Representation in Oceanography
SAMPLE DOCTORAL PROGRAM IN OCEAN ENGINEERING – OFFSHORE EMPHASIS

Required Courses (From Master of Science Level)

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 678 Fluid Dynamics for Ocean and Environmental Engineering</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 671 Ocean Wave Mechanics</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 676 Dynamics of Offshore Structures</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 601 Higher Mathematics for Engineers and Physicists I</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 672 Coastal Engineering</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Required Courses (PhD Level)

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 602 Meth. and App. Partial Diff. Eqns.</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 681 Seminar (Every Semester in Residence)</td>
<td>M/PhD</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OCEN 691 Research (toward PhD degree)</td>
<td>PhD</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics and Fluid Mechanics Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 688 Computation Fluid Dynamics</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 689 Nonlinear Wave Mechanics</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Sample Courses to Complete Coursework Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 673 Nonlinear Hydrodynamics Problems in Ocean Engineering</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 679 Experimental Fluid Mechanics Modeling</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 680 Advanced Computation Methods for Fluid Flow</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 655 Structural Reliability</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 686 Offshore and Coastal Structures</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

1Notation: 1 means taught once per year, 2/3 means taught once every three semesters, 1/2 means taught once every two years, and 1/3 means taught once every three years.
SAMPLE DOCTORAL PROGRAM IN COASTAL ENGINEERING – COASTAL EMPHASIS

Required Courses (From Master of Science Level)

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 678 Fluid Dynamics for Ocean and Environmental Engineering</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 671 Ocean Wave Mechanics</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 672 Coastal Engineering</td>
<td>M/PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 601 Higher Mathematics for Engineers and Physicists I</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 676 Dynamics of Offshore Structures</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Required Courses (PhD Level)

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 602 Meth. and App. Partial Diff. Eqns.</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 681 Seminar (Every Semester in Residence)</td>
<td>M/PhD</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>OCEN 691 Research (toward PhD degree)</td>
<td>PhD</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

Mathematics and Fluid Mechanics Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVEN 688 Computation Fluid Dynamics</td>
<td>M/PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 689 Environmental Fluid Mechanics</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Sample Courses to Complete Coursework Requirement

<table>
<thead>
<tr>
<th>Course</th>
<th>M(ES) or PhD</th>
<th>Credits</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCEN 674 Ports and Harbors</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 682 Coastal Sediment Processes</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CVEN 679 Experimental Fluid Mechanics Modeling</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 683 Estuary Hydrodynamics</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OCEN 688 Marine Dredging</td>
<td>PhD</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

¹Notation: 1 means taught once per year, 2/3 means taught once every three semesters, 1/2 means taught once every two years, and 1/3 means taught once every three years.
LEGEND

1. Oceanography
 Ocean 685, Physical
 Ocean 688, Coastal

2. Physical Oceanography
 Ocean 688, Coastal
 Ocean 685, Physical

3. Fluid Mechanics
 Ocean 637, Ocean Engr.
 Ocean 638, Fundamental Eng.
 Ocean 639, Ocean Engr.

4. Partial Differential Equations
 Marine Fluid Mechanics
 Mathematical Foundations
 Ocean 688, Introduction

5. Numerical Models and Applications
 Ocean 689, Advanced
 Complex Variables
 Ocean 681, Ocean Engr.

6. Mathematical Methods
 Ocean 690, Linear Al.
 Ocean 691, Linear Al.
 Ocean 692, Linear Al.

1.5 Modeling in Fluid Mechanics
 Ocean 679, Experimental

2. Model in Fluid Mechanics
 Ocean 688, Introduction

3. Fluid Mechanics
 Ocean 637, Ocean Engr.
 Ocean 638, Fundamental Eng.
 Ocean 639, Ocean Engr.

4. Partial Differential Equations
 Ocean 688, Introduction
 Mathematical Foundations
 Ocean 688, Math.

5. Numerical Models and Applications
 Ocean 689, Advanced
 Complex Variables
 Ocean 681, Ocean Engr.

6. Mathematical Methods
 Ocean 690, Linear Al.
 Ocean 691, Linear Al.
 Ocean 692, Linear Al.
Funding Opportunities
Research Assistantships

Research Assistantship (RA) positions are offered through individual faculty members. There is no centralized list of available positions. You'll need to set-up appointments to meet with faculty individually. You are strongly recommended through our department's web site to identify the different research areas in which each professor is working before meeting with them.

Teaching Assistantships

New students are automatically considered for the small number of available positions based on their graduate application package. For all other students, a call for those interested in TA positions for future semesters will typically occur around the 10th week of the semester.

If you are an international student, you must have satisfactorily passed the ELPE exam before being considered for a TA position.

Fellowships

Fellowships are typically awarded to incoming students, and there is no formal application process. Any request for fellowships must come from your research advisor, who is recommending you for this award to Chair of the Ocean Engineering Scholarship Committee, who coordinates those awards for our division.

Tuition Waivers & In-state Tuition

Tuition waivers do not exist by themselves – Research and Teaching Assistantship positions will include coverage of your tuition. Additionally, you can qualify for in-state tuition if you were awarded a Fellowship.

Other job opportunities

If you are interested or need to pursue job opportunities beyond the TA/RA positions, you may want to look at: http://jobforaggies.com
Additional Information
Full-Time Enrollment

Required credit hours to be certified as a full-time are:

- Fall and Spring semesters: 9 hours
- 10-week summer semester: 6 hours

Graduate students may be certified as full time with fewer than the required hours under special circumstances, including:

- During their final semester before graduation;
- Presence of a documented disability that mandates a reduced course load

These exceptions may or may not apply to a student’s eligibility for certain types of financial aid. Students who have questions about how exceptions to the full time enrollment requirements will affect their scholarships, loans, grants, etc., should confer with their financial aid counselor.

In most cases, international students are eligible for the same exceptions to full time requirements; however, all international students requesting an exception to full time requirements must have their request approved by International Student Services. Students who are not U.S. citizens, but who are permanent U.S. residents (VISA TYPE = IM) are not required to clear with ISS on enrollment exceptions.

A student who is enrolled in less than a full-time course of study at Texas A&M may be in jeopardy of:

- being out of compliance with the Bureau of Citizenship and Immigration Services (formerly INS) if enrolled at Texas A&M on a student visa;
- losing their Research or Teaching Assistantship position
- losing insurance coverage under his or her parent/guardian’s insurance policy;
- being placed on a loan repayment schedule by a lender or guarantor if the student is the recipient of Federal financial aid; and/or
- losing a scholarship if the guidelines for receiving the scholarship require full-time enrollment, etc.
Student Offices

Offices for students who are Teaching Assistants are made through either Ms. Maxine Williams (CE Graduate Advising Office) or Ms. Pam Fambro (Ocean Engineering Program).

For students who become involved in research, desk assignments are coordinated by Ms. Pam Fambro, 8th floor of the CE/TTI building.

Academic Probation

Graduate students must maintain 3.0 GPR. This requirement includes courses in degree plan as well as all graduate courses taken. If a course is repeated, the GPR included all courses taken. If a student’s GPR falls below 3.0, the student will need to meet with their graduate advisor to set out a plan to raise GPR to above 3.0 within one semester. Under extenuating circumstances, a second semester may be allowed for the student to raise their GPR.

Once a plan has been devised, it will be forwarded to the main CE Graduate Office. If the student fails to raise their GPR, they will be removed from the ocean engineering graduate program.