Instructor: Jerry L. Bradshaw, P.E.
Sr. Lecturer
Office- Zachry 36B
Phone- 845-0610
Home Phone- 690-0445

Prerequisites: CHEN 414 and 424; CHEN 461 and 464 or registration therein.

Textbook Required: Chemical Engineering Unit Operations Laboratory II. This laboratory manual is written by the laboratory instructor and is sold to the students at the TEES Copy Center. The manual includes laboratory safety rules, course syllabus, and a discussion of each experiment including some theory. Unit Operations Laboratory Report Preparation Guidelines. This manual includes information on communication (oral and written), suggested report format and a sample report. The Guidelines have evolved over a number of years with input from CHEN Faculty, Tech Writing Faculty and Graduate Students. Other references are standard textbooks on grammar, technical writing, unit operations and Perry’s Handbook.

Attendance Policy: Attendance is mandatory and is included in the class grade.

Course Description: In CHEN 433, engineering problem solving is taught through hands on experience with pilot plant scale equipment in the atmosphere of a technical task group. In the course, skills for accurate data collection, analysis and communication are developed. Students learn to operate equipment and modern instrumentation with precision. They thoroughly analyze their data and present a formal written report on each of the four experiments. Laboratory safety rules are strictly enforced, and a review of a current safety article (from trade literature) is required in each report. Grammar and technical writing are considered to be as important as technical content, and the students rewrite the first three reports after they are graded.

Learning Objectives: At the end of this course, students will be able to
1. Start up and operate a continuous stirred tank reactor (CSTR). Determine reaction rate constant and compare to literature
2. Startup and operate a distillation column using a modern industrial control system; determine theoretical and actual operable minimum reflux ratios; determine the number of theoretical stages and the HETP for column packing; calculate mass and energy balances on a real distillation column.
3. Startup and operate a double-effect evaporator using a different modern industrial control system; calculate mass and energy balances, capacity and economy.
4. Gather extensive data on a gas permeation process and develop a mathematical model of the process.
5. Write formal written reports on each of the experiments.
6. Work effectively on project teams in both member and leader roles, with team members who may have different backgrounds (ethical, gender, or cultural) and technical skill levels.
Topics and Hours

Topics

1. Introduction, Laboratory Safety Rules, Report Writing (3 hours)
2. Familiarization with Experiments (3 hours)
3. Saponification of Ethyl Acetate (6 hours)
4. Gas Permeation (6 hours)
5. Double-Effect Evaporation (6 hours)
6. Distillation (6 hours)
7. Lectures by the instructor and friends from industry (8 hours)

Total: 38 hours

Class Policies and Procedures

- Each group conducts four experiments. Each study requires a single written report. The COURSE SCHEDULE gives details.

- Obtain the following supplies:
  
  For each student:
  - Eye protection

  For each group:
  - Four folders with transparent covers
  - Four report cover sheets provided by the Instructor

- Check out at the end of each day of the experiment by having the laboratory instructor sign the data sheet.

- Submit the reports in the folders, with cover sheet visible, bound with ACCO type fasteners.

- Turn in reports at the beginning of the appropriate laboratory session! There is penalty for late reports.

- Rotate responsibility for the final form of the various sections of the report among the group members.

- Put your initials on the pages you write.

- Each report receives a letter grade based on the following criteria:
  - The accuracy of the data and results.
  - The understanding and thought shown in analyzing the experiment.
  - The effectiveness of communication.

  The intent is to give the same grade to all team members. Under special circumstances, members will be given individual grades.

- A report may be returned for complete rewriting and/or reworking if the laboratory instructor determines it is inadequate. All reports must be submitted in satisfactory form to receive a passing grade in the course.

- One week after the reports are returned to the students, recommendations from the graders are to be incorporated in a revised version of the report. Each revised page should be inserted in front of its original page, and the report should be turned in to the Instructor. The revised version will be inspected to determine if the recommendations were incorporated.
The assignment of group leader rotates. The duties include the following:

1. Notifying the laboratory instructor that he/she is the group leader.
2. Organizing and directing the preparation and execution of the experiment.
3. Insuring that all equipment is in place and the work area is clean and orderly before the group leaves the laboratory.
4. Coordinating the preparation of the report and checking for overall unity and coherence.
5. Preparing and submitting the Confidential Group Leader's Report in a sealed envelope attached to the report.

The Confidential Group Leader's Report must include letter grades for the other team members and a brief statement evaluating the performance of each. The evaluation should be over the total job (the work in the laboratory and the preparation of the report). Include in the Group Leader's Report, the following statement: "On my honor as an Aggie, this group has neither given nor received unauthorized aid on this academic work." The report should be signed by the group leader.

After group members examine the comments and correct the reports, they should return them to the Laboratory Instructor within one week.

The distribution used to determine the final grades will be as follows:

1. Laboratory Performance 20%
2. Group Leaders Evaluation 10%
3. Written Reports 65%
4. Exam- Report Writing Guidelines 5%

"Laboratory Performance" includes

1. Preparation before class
2. Prompt attendance
3. Effectiveness as a group leader
4. Contribution as a team member
5. Neatness (in the laboratory and on the data sheets)
6. Care and accuracy in operating the equipment and gathering data
7. Proper use of safety equipment
8. Strict adherence to safety guidelines
9. Effort and effectiveness in correcting the reports

Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit http://disability.tamu.edu

Academic Integrity

“An Aggie does not lie, cheat, or steal, or tolerate those who do.”

For additional information please visit: http://www.tamu.edu/aggiehonor
**Copyrights**

The handouts used in this course are copyrighted. By “handouts” we mean all materials generated for this class, which include but are not limited to syllabi, lab problems, in-class materials, review sheets, and additional problem sets. Because these materials are copyrighted, you do not have the right to copy the handouts, unless the author expressly grants permission.

---

**Relationship to Program Outcomes:**

<table>
<thead>
<tr>
<th>Course Objectives</th>
<th>Assessment Method</th>
<th>ChE program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start up and operate a continuous stirred tank reactor (CSTR). Determine reaction rate constant and compare to literature</td>
<td>Laboratory Work, Report Writing</td>
<td>1, 2, 4, 5, 6, 11</td>
</tr>
<tr>
<td>Startup and operate a distillation column using a modern industrial control system; determine theoretical and actual operable minimum reflux ratios; determine the number of theoretical stages and the HETP for column packing; calculate mass and energy balances on a real distillation column.</td>
<td>Laboratory Work, Report Writing</td>
<td>1, 2, 4, 5, 6, 11</td>
</tr>
<tr>
<td>Startup and operate a double-effect evaporator using a different modern industrial control system; calculate mass and energy balances, capacity and economy.</td>
<td>Laboratory Work, Report Writing</td>
<td>1, 2, 4, 5, 6, 11</td>
</tr>
<tr>
<td>Gather extensive data on a gas permeation process and develop a mathematical model of the process.</td>
<td>Laboratory Work, Report Writing</td>
<td>1, 2, 4, 5, 6, 11</td>
</tr>
<tr>
<td>Write formal written reports on each of the experiment</td>
<td>Report Writing</td>
<td>4, 7, 11</td>
</tr>
<tr>
<td>Work effectively on project teams in both member and leader roles, with team members who may have different backgrounds (ethical, gender, or cultural) and technical skill levels.</td>
<td>Laboratory Work, Report Writing</td>
<td>4, 7, 11</td>
</tr>
</tbody>
</table>