

ATERIALS SCIENCE

A&M UNIVERSITY

(CINEERI

MSEN 681 Seminar Series 4:10 рм, Monday, November 10, 2014 • 104 Jack E. Brown

Microstructures and Mechanical Properties of Novel FeNiMnAl Alloys

Dr. Ian Baker

Dartmouth College

Near-equiatomic FeNiMnAI alloys show a wide range of microstructures and mechanical properties, but have been little explored. Studies on three different types of microstructures in this alloy system will be outlined: 1) ultrafine microstructures (5-50 nm), present in Fe₃₀Ni₂₀Mn₂₀Al₃₀, Fe₂₅Ni₂₅Mn₂₀Al₃₀ and Fe₃₅Ni₁₅Mn₂₅Al₂₅, which consist of (Fe, Mn)-rich B2-ordered (ordered b.c.c.) and (Ni, Al)-rich L2₁-ordered (Heusler) phases, and in Fe₃₀Ni₂₀Mn₂₅Al₂₅, which consist of (Ni, Al)-rich B2 and (Fe, Mn)-rich b.c.c. phases, with the phases aligned along <100>; 2) fine microstructures (50-70 nm), present in $Fe_{30}Ni_{20}Mn_{30}Al_{20}$, Fe₂₅Ni₂₅Mn₃₀Al₂₀, and Fe₂₈Ni₁₈Mn₃₃Al₂₁, which consist of alternating (Fe, Mn)-rich f.c.c and (Ni, Al)-rich B2-ordered plates with an orientation relationship close to f.c.c.(002)//B2(002); f.c.c.(011)//B2(001); and 3) coarser (0.5-1.5 µm) lamellar microstructures observed in alloys with a lower aluminum content, such as Fe₃₀Ni₂₀Mn₃₅Al₁₅, that consist of alternating (Fe, Mn)-rich f.c.c and (Ni, Al)-rich B2-ordered phases with a Kurdjumov-Sachs orientation relationship between the phases. The microstructures and mechanical properties in these alloys have been determined as a function of annealing time, testing temperature and strain rate. Some unusual features that have been observed include: no change of hardness as the phase width increases in some of the B2/L1₂ alloys; a lower BDTT for coarser phase-sized Fe₃₀Ni₂₀Mn₂₀Al₃₀ than material with a finer phase size; a monotonic increase in elongation with increasing phase spacing in Fe₂₈Ni₁₈Mn₃₃Al₂₁; room temperature environmental embrittlement at slow strain rates in Fe₃₀Ni₂₀Mn₃₅Al₁₅, and a monotonic improvement in this embrittlement with increasing concentrations of Cr.

This research was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (DOE grant DE-FG02-07ER46392).