The Artie McFerrin Department of Chemical Engineering is one of the top rated chemical engineering departments in the world. It is also one of the largest, fully accredited chemical engineering programs in the country. The department has become a prolific chemical engineering research hub, with the faculty producing more than 200 refereed journal publications in 2017.

Located in the 205,000 square-foot, Jack E. Brown Chemical Engineering Building, the department provides its students and faculty members access to the latest resources, including 88 research and teaching facilities, six general classrooms, 13 conference rooms, and four computer laboratories.

Research

The Artie McFerrin Department of Chemical Engineering at Texas A&M University has faculty engaged in a wide breadth of studies ranging from highly applied research in the areas of biomass utilization, process safety and hydrocarbon processing to very fundamental research in nanotechnology, life sciences, process systems engineering and molecular simulation. The ultimate goal of the research is to positively impact society by providing new knowledge.

Department Research Areas

- Biomedicine | Biomolecules
- Biofuels | Biotechnology
- Catalysis
- Complex Fluids | Microfluidics | Soft Matter
- Computational Chemical Engineering
- Energy
- Environmental | Sustainability
- Materials | Microelectronics
- Multiscale Systems Engineering
- Nanotechnology
- Process Safety | Process Systems Engineering
- Reaction Engineering
- Thermodynamics

Department Head

M. Nazmul Karim | Professor | T. Michael O'Connor Chair II
nazkarim@tamu.edu
Centers and Institute

- Gas & Fuels Research Center
- Mary Kay O’Connor Process Safety Center
- Texas A&M Energy Institute

Research Labs

- Multi-Scale Systems Engineering Laboratory
- Process Integration and Systems Optimization research Group
- Systems Optimization and Multi-scale Analysis Lab (SOULS)
- Multi-scale Nanostructured Materials Lab
- Thin Film Nano & Microelectronics Research Laboratory
- Biomolecular Engineering And Biological Soft-Matter Physics Lab
- Organic Thin Films and Nanostructures Lab
- Multi-parametric Optimization & Control Lab

Research Impact

Total Research Expenditures $19.4 million

Degrees Conferred

Undergraduate Degrees 150

Graduate Degrees
- M.S. in Chemical Engineering 17
- M.S. SENG in Safety Engineering 13
- Masters in Biotechnology 18
- M.Eng. in Chemical Engineering 4
- Ph.D. in Chemical Engineering 17

Scholarships & Assistantships

Undergraduate
- Scholarship students received $417,000

Graduate
- Graduate Student Research Assistants 160
- Graduate Student Fellowships 13