Theoretical Health Physics Examination Topics

I. Stochastic processes
 a. Independent events
 b. Poisson statistics
 c. Theoretical resolution of energy deposition
 d. Deviation from Poisson statistics – Fano factor

II. Nuclear physics basics
 a. Field descriptions
 b. Interaction of radiation with matter and interaction rates
 i. Production of annihilation radiation, Bremsstrahlung, and Auger electrons
 c. Radioactive decay
 i. Half-life, mean life, decay constant, activity
 ii. Simple decay
 iii. Composite decay
 iv. Serial decay
 v. Activation /decay relations
 d. Nuclear decay schemes
 e. Shielding and radiation attenuation

III. Ionizing radiation
 a. Types and sources
 b. Characteristics
 c. Field quantities
 d. Interaction with matter
 i. Ionization, excitation, W-value
 ii. Range, CSDA range, density thickness, mean-free path
 iii. Stopping power, linear energy transfer, lineal energy transfer
 iv. Compton effect, photoelectric effect, pair production
 v. Attenuation coefficients
 vi. Rayleigh scattering
 vii. Photonuclear interactions
 e. Quantities describing interactions
 viii. Kerma
 ix. Absorbed dose
 x. Exposure

IV. Radiation measurement and counting
 a. Theory
 b. Gas-filled detectors
 c. Scintillation detectors
 d. Semiconductor detectors
 e. Special detectors
V. Dosimetry
 a. Fundamentals and concepts
 b. Cavity theory
 i. Bragg-Gray theory
 ii. Spencer cavity theory
 iii. Burlin cavity theory
 iv. Fano theorem
 v. Other cavity theories
 vi. Interfaces
 c. Radiation equilibrium
 d. Charged particle equilibrium
 i. Distributed sources
 ii. Indirectly ionizing radiation
 iii. Failure of CPE
 e. Transient charged particle equilibrium
 f. Active and passive dosimeters
 g. Mixed field measurements
 h. Calibration
 i. Quantities in radiation protection
 i. Quality factor (radiation weighting factor)
 ii. Tissue weighting factors
 iii. Dose equivalent (equivalent dose)
 iv. Effective dose equivalent (effective dose)

VI. Radiobiology and biological effects
 a. Relative biological effectiveness
 b. Cell type and radiation sensitivity
 c. Molecular processes
 i. Direct action
 ii. Indirect action
 iii. Oxygen effect
 d. DNA damage
 e. Repair and misrepair

VII. Models of radiation damage
 a. Single hit models
 b. Multi-hit models
 c. Multi-target models
 d. Survival curves
 e. Influence of radiation quality
 f. Stochastic effects
 g. Deterministic effects
 h. Relative and absolute risk models
 i. Weaknesses and uncertainties
VIII. Radioactivity transport and pathways
 a. Routes of entry into the body
 b. Routes of elimination from the body
 c. Biological half-times
 d. Systemic and metabolic models
 e. Bioaccumulation factors

IX. Other topics
 a. X-ray machines and accelerators
 b. Food irradiation
 c. Neutron radiography
 d. Radiological terrorism
 e. Radioactive waste management
 f. Space radiation
 g. Aerosol physics – physical elements and determinants of exposure
 i. Deposition of particles as a function of size: diffusion, impaction
 1. environmental deposition
 2. internal deposition
 ii. How radioactivity associates with particles
 1. dispersion as particles of bulk radioactive materials
 2. deposition of atomic or molecular radioactive species on
 pre-existing particles
 3. formation of particles about atomic or molecular
 radioactive species
 iii. Environmental influences on carriers of radioactivity
 1. humidity as a cause of size change – condensation or
 evaporation
 2. background aerosols as scavengers of airborne radioactivity
 for either beneficial purposes or otherwise