CONTENTS

Objective .. 3
Department Policy on Academic Advising .. 3
Registration Blocks .. 3
Courses Comprising the Major Field ... 3
Courses Taken S/U .. 3
Current Address ... 3
Curriculum in Petroleum Engineering .. 4
Summer Employment – PETE 300 ... 10
Scholastic Performance Requirements for Petroleum Engineering Undergrads 10
Minor Field of Study .. 11
Dwight Look College of Engineering Probation and Block Policies 12
Departmental Scholarship Requirements ... 14
Q-Drops .. 15
Co-Enrollment .. 15
Student Paper Contest .. 15
TAMU Student Chapter of SPE .. 15
Engineering Honors Certificate .. 16
Transfer of Course Credits to BS-PETE Degree Requirements .. 16
OBJECTIVE

The objective of this handbook is to make available to students and faculty a concise reference for departmental policies related to the Undergraduate Petroleum Engineering curriculum at Texas A&M University (BS-PETE).

DEPARTMENT POLICY ON ACADEMIC ADVISING

Members of the faculty and staff designated by the Department Head, will be responsible for general academic advising of undergraduate students. Dr. Bryan Maggard (Undergraduate Advisor) and Mrs. Carol Mumford are the current academic advisors. General advising will include development of a comprehensive degree plan and planning of the next semester’s courses prior to registration. Students will be encouraged to enroll in 15 credit hours per semester, in accordance with University policy.

REGISTRATION BLOCKS

Undergraduate students who are on scholastic probation or who have not been admitted to Junior level petroleum engineering courses will be blocked from registration pending consultation with their academic advisor. The purpose of this policy is to assist students in developing a degree plan that satisfies all graduation requirements, including satisfying prerequisite course sequences.

COURSES COMPRISING THE MAJOR FIELD

For Catalog 129 and subsequent catalogs, the courses comprising the major field are defined by the Petroleum Engineering Department as follows:

- All required PETE and GEOL courses included in the Curriculum in Petroleum Engineering

COURSES TAKEN S/U

No courses leading to a baccalaureate degree in petroleum engineering may be taken on a pass/fail (S/U) basis, except Kinesiology courses (KINE 198 and 199). All other courses must be taken for a letter grade (A, B, C, D, F). Note that the University Core Curriculum requires at least one KINE 199 to be taken S/U.

CURRENT ADDRESS

To avoid missing important information from the Petroleum Engineering Department, it is the responsibility of each student to inform the university of current local and permanent addresses, telephone numbers and both departmental (@pe.tamu.edu) and university e-mail accounts (@tamu.edu). Communications mailed to either address of record will be deemed to be adequate notice. To make changes, see website: howdy.tamu.edu, or call Mrs. Gail Krueger at 845-6955.
Petroleum Engineering is primarily concerned with the economic extraction of oil, gas, and other natural resources from the earth. Producing oil and gas is accomplished through the design, drilling and operation of wells and well systems, and the integrated management of the underground reservoirs in which the resources are found.

The mission of the Petroleum Engineering Department is to create, preserve, integrate, transfer, and apply petroleum engineering knowledge and to enhance the human capability of its practitioners. The Petroleum Engineering Program has three educational objectives.

- graduates will be competitive in the petroleum engineering job market, or in admission to graduate school;
- graduates will have the technical depth and breadth to be successful professionals early in their careers; and
- graduates will have the broad technical knowledge and soft skills needed to rise to positions of professional leadership.

In essence, the goal of the petroleum engineering curriculum is to provide a modern engineering education with proper balance between fundamentals and practice, and to graduate engineers prepared for life-long learning but capable of being productive contributors immediately. The curriculum includes study of:

- design and analysis of well systems and procedures for drilling and completing wells;
- characterization and evaluation of subsurface geological formations and their resources;
- design and analysis of systems for producing, injecting, and handling fluids;
- application of reservoir engineering principles and practices for optimizing resource development and management; and
- use of project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty.

There is a heavy emphasis on mathematics, computer applications, communication skills, and interdisciplinary problem solving. As a result, Aggie petroleum engineers are in high demand in the industry, and their starting salaries are consistently among the top in the University and the nation.

The department is well-known for its curriculum, facilities and faculty, and its undergraduate program was recognized as the best in the nation by US News and World Report in 2003. The faculty comprises more than 33 professors and lecturers, many of them widely known and globally involved in the petroleum industry. Four of the faculty are members of the prestigious National Academy of Engineering, and 15 are Distinguished Members of the Society of Petroleum Engineers.

The department encourages its students to work as interns during the summer months. A minimum of six weeks of approved experience is required for graduation. The department also participates in the Cooperative Education Program.

In addition to the Bachelor of Science degree in Petroleum Engineering, the department also offers both master’s and doctoral degrees, including the Master of Science and Master of Engineering, and the Doctor of Philosophy and Doctor of Engineering (see the Texas A&M University Graduate Catalog).
Petroleum Engineering Curriculum
TAMU Catalog 136 (2013-2014)

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>First Semester</th>
<th>(Th-Pr) Cr</th>
<th>Second Semester</th>
<th>(Th-Pr) Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 104 Composition and Rhetoric</td>
<td>(3-0) 3</td>
<td>CHEM 107 Gen. Chem. for Eng. Students</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>ENGR 111 Foundations in Engineering I</td>
<td>(1-3) 2</td>
<td>CHEM 117 Gen. Chem. for Eng. Stu. Lab</td>
<td>(0-3) 1</td>
</tr>
<tr>
<td>MATH 151 Engineering Mathematics I</td>
<td>(3-2) 4</td>
<td>ENGR 112 Foundations in Engineering II</td>
<td>(1-3) 2</td>
</tr>
<tr>
<td>PHYS 218 Mechanics</td>
<td>(3-3) 4</td>
<td>MATH 152 Engineering Mathematics II</td>
<td>(3-2) 4</td>
</tr>
<tr>
<td>University Core Curriculum elective 2</td>
<td>3</td>
<td>PHYS 208 Electricity and Optics</td>
<td>(3-3) 4</td>
</tr>
<tr>
<td>KINE 198 Health and Fitness Activity</td>
<td>(0-2) 1</td>
<td>University Core Curriculum elective 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KINE 199 Req. Phys. Activity (S/U only)</td>
<td>(0-2) 1</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM 205 Comm. for Tech. Professions</td>
<td>(3-0) 3</td>
<td>COMM 305 Mechanics of Materials</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>GEOL 104 Physical Geology</td>
<td>(3-3) 4</td>
<td>MATH 308 Differential Equations</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>MATH 251 Engineering Mathematics III</td>
<td>(3-0) 3</td>
<td>MATH 315 Principles of Thermodynamics</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>MEEN 221 Statics and Particle Dynamics</td>
<td>(3-0) 3</td>
<td>PETE 311 Reservoir Petrophysics</td>
<td>(3-3) 4</td>
</tr>
<tr>
<td>PETE 225 Petroleum Drilling Systems</td>
<td>(1-3) 2</td>
<td>University Core Curriculum elective 2</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum elective 2</td>
<td>3</td>
<td>University Core Curriculum elective 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 404 Geology of Petroleum</td>
<td>(2-3) 3</td>
<td>PETE 321 Formation Evaluation</td>
<td>(3-3) 4</td>
</tr>
<tr>
<td>PETE 301 Petr. Engr. Numerical Methods</td>
<td>(2-3) 3</td>
<td>PETE 323 Reservoir Models</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>PETE 310 Reservoir Fluids</td>
<td>(3-3) 4</td>
<td>PETE 324 Well Performance</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>PETE 314 Transport Proc. in Petr. Prod.</td>
<td>(3-0) 3</td>
<td>PETE 325 Petroleum Production Systems</td>
<td>(1-3) 2</td>
</tr>
<tr>
<td>PETE 335 Technical Presentations I 3</td>
<td>(1-0) 1</td>
<td>PETE 403 Petroleum Project Evaluation</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

SUMMER

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE 300 Summer Practice</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 215 Principles of Electrical Eng.</td>
<td>(2-2) 3</td>
<td>ENGR 482 Ethics and Engineering</td>
<td>(2-2) 3</td>
</tr>
<tr>
<td>PETE 401 Reservoir Simulation</td>
<td>(2-3) 3</td>
<td>PETE 322 Geostatistics</td>
<td>(3-0) 3</td>
</tr>
<tr>
<td>PETE 405 Drilling Engineering</td>
<td>(3-0) 3</td>
<td>PETE 400 Reservoir Description</td>
<td>(2-3) 3</td>
</tr>
<tr>
<td>PETE 410 Production Engineering</td>
<td>(3-0) 3</td>
<td>Technical elective 4</td>
<td>3</td>
</tr>
<tr>
<td>PETE 435 Technical Presentations II 3</td>
<td>(1-0) 1</td>
<td>University Core Curriculum elective 2</td>
<td>3</td>
</tr>
<tr>
<td>University Core Curriculum elective 2</td>
<td>3</td>
<td>University Core Curriculum elective 2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

NOTES:

1. PETE 201 is also required during the first semester of the freshman year.
2. To be selected from the University Core Curriculum. Of the 18 hours shown as University Core Curriculum electives, 3 must be from visual and performing arts, 3 from social and behavioral sciences, 6 from U. S. history, and 6 from POLS 206 and 207. The required 6 hours from international and cultural diversity may be met by courses satisfying the visual and performing arts, social and behavioral sciences, and/or U. S. history requirements if they are on the approved list of international and cultural diversity courses (see Catalog 136, page 19-20). In addition, ENGR 482/PHIL 482 must be taken.
3. Independent study of a petroleum engineering problem, the solution of which will be documented by a technical paper and an oral presentation at the departmental student paper contest held during the same academic year.
4. Select from GEOL 312, GEOP 421, PETE 406 or 416, or other as approved by the department head.

The following certificates from the Dwight Look College of Engineering are available for students pursuing this degree: Business Management, Energy Engineering, Engineering Project Management, Engineering Scholars Program Honors, International Engineering, Polymer Specialty, and Safety Engineering. See description beginning on page 325 for detailed information.
The following is a list of approved international and cultural diversity courses that also meet visual and performing arts (VPA), social and behavioral sciences (SBS), and U. S. history (USH) requirements, along with any prerequisites.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Letters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFST 317</td>
<td>SBS</td>
<td>U3 or U4 Class. Or with appr. of instr.; cross listed with SOCI 317</td>
</tr>
<tr>
<td>AFST 323</td>
<td>SBS</td>
<td>SOCI 205; U3 or U4 class. or with appr. of instr.; cross listed with SOCI 323</td>
</tr>
<tr>
<td>AGEC 452</td>
<td>SBS</td>
<td>AGEC 105, or any ECON (3 hours); and U3 class.</td>
</tr>
<tr>
<td>AGEC 453</td>
<td>SBS</td>
<td>AGEC 105, or any ECON (3 hours); and U3 class.</td>
</tr>
<tr>
<td>ANTH 210</td>
<td>SBS</td>
<td>POLS 229</td>
</tr>
<tr>
<td>ANTH 300</td>
<td>SBS</td>
<td>POLS 317</td>
</tr>
<tr>
<td>ANTH 314</td>
<td>SBS</td>
<td>POLS 206 or appr. of Head</td>
</tr>
<tr>
<td>ANTH 324</td>
<td>VPA</td>
<td>MUSC 102, or inst. Appr. Cross listed with MUSC 324</td>
</tr>
<tr>
<td>ANTH 403</td>
<td>SBS</td>
<td>Cross listed with RELS 403</td>
</tr>
<tr>
<td>ANTH 404</td>
<td>SBS</td>
<td>Cross listed with WMST 404</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>VPA</td>
<td>POLS 328</td>
</tr>
<tr>
<td>ARCH 350</td>
<td>VPA</td>
<td>U3 or U4 Classif. or with appr. of instr.</td>
</tr>
<tr>
<td>ARTS 150</td>
<td>VPA</td>
<td>POLS 365</td>
</tr>
<tr>
<td>ARTS 350</td>
<td>VPA</td>
<td>POLS 367</td>
</tr>
<tr>
<td>CARC 335</td>
<td>VPA</td>
<td>U3 or U4 Classif. or with appr. of instr.</td>
</tr>
<tr>
<td>COMM 335</td>
<td>SBS</td>
<td>Any COMM course, or U3 classif., or appr. of instr.</td>
</tr>
<tr>
<td>ECON 312</td>
<td>SBS</td>
<td>ECON 232 or co-enrollment</td>
</tr>
<tr>
<td>ECON 320</td>
<td>SBS</td>
<td>ECON 202 & ECON 203</td>
</tr>
<tr>
<td>ECON 324</td>
<td>SBS</td>
<td>ECON 202 & ECON 203</td>
</tr>
<tr>
<td>ECON 330</td>
<td>SBS</td>
<td>ECON 202 & ECON 203</td>
</tr>
<tr>
<td>ENDS 101</td>
<td>VPA</td>
<td>POLS 324</td>
</tr>
<tr>
<td>ENGL 251</td>
<td>VPA</td>
<td>ENGL 104 Cross listed with FILM 251</td>
</tr>
<tr>
<td>ENGL 340</td>
<td>VPA</td>
<td>3 hours of 200-level literature course</td>
</tr>
<tr>
<td>ENGL 403</td>
<td>SBS</td>
<td>U3 or U4 Classif. Cross listed with LING 403 and WGST 403</td>
</tr>
<tr>
<td>EURO 406</td>
<td>VPA</td>
<td>U3 or U4 classif. Cross listed with FILM 406</td>
</tr>
<tr>
<td>EURO 447</td>
<td>VPA</td>
<td>U3 or U4 classif. Or appr. of instr. Cross listed with RUSS 447</td>
</tr>
<tr>
<td>FREN 425</td>
<td>VPA</td>
<td>FREN 202 or appr. of instr. Cross listed with FILM 425</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>SBS</td>
<td>SOCI 329</td>
</tr>
<tr>
<td>GEOG 306</td>
<td>SBS</td>
<td>SOCI 330</td>
</tr>
<tr>
<td>GEOG 311</td>
<td>SBS</td>
<td>SOCI 403</td>
</tr>
<tr>
<td>GEOG 420</td>
<td>SBS</td>
<td>U3 or U4 class. or with appr. of instr.</td>
</tr>
<tr>
<td>HIS 352</td>
<td>VPA</td>
<td>SOCI 423</td>
</tr>
<tr>
<td>HIST 258</td>
<td>USH</td>
<td>SOCI 424</td>
</tr>
<tr>
<td>HIST 301</td>
<td>USH</td>
<td>Cross listed with AFST 301</td>
</tr>
<tr>
<td>HIST 305</td>
<td>USH</td>
<td>SPMT 336</td>
</tr>
<tr>
<td>HIST 307</td>
<td>USH</td>
<td>SPMT 337</td>
</tr>
<tr>
<td>HIST 319</td>
<td>USH</td>
<td>THAR 201</td>
</tr>
<tr>
<td>HIST 343</td>
<td>USH</td>
<td>THAR 281</td>
</tr>
<tr>
<td>HIST 451</td>
<td>USH</td>
<td>VTPB 221</td>
</tr>
<tr>
<td>HIST 455</td>
<td>USH</td>
<td>WGST 207</td>
</tr>
<tr>
<td>HIST 460</td>
<td>USH</td>
<td>WGST 300</td>
</tr>
<tr>
<td>HIST 461</td>
<td>USH</td>
<td>Cross listed with WGST 461</td>
</tr>
<tr>
<td>HIST 473</td>
<td>USH</td>
<td>WGST 316</td>
</tr>
<tr>
<td>HIST 256</td>
<td>USH</td>
<td>WGST 317</td>
</tr>
<tr>
<td>HORT 335</td>
<td>SBS</td>
<td>WGST 367</td>
</tr>
<tr>
<td>INST 310</td>
<td>SBS</td>
<td>WGST 404</td>
</tr>
<tr>
<td>INST 322</td>
<td>SBS</td>
<td>WGST 424</td>
</tr>
<tr>
<td>LAND 240</td>
<td>VPA</td>
<td>WGST 462</td>
</tr>
<tr>
<td>LING 402</td>
<td>SBS</td>
<td>WGST 463</td>
</tr>
<tr>
<td>MUSC 312</td>
<td>VPA</td>
<td>MUSC 205 or appr. of instr.</td>
</tr>
</tbody>
</table>
PETE 201. Introduction to Petroleum Engineering. (1-0). Credit 1. Overview and history of the petroleum industry and petroleum engineering; nature of oil and gas reservoirs, exploration and drilling, formation evaluation, well completions and production, surface facilities, reservoir mechanics, improved oil recovery; impact of ethical, societal, environmental considerations; career development resources, including professional society. Prerequisite: Approval of department head.

PETE 225. Petroleum Drilling Systems. (1-3). Credit 2. Introduction to petroleum drilling systems, including fundamental petroleum engineering concepts, quantities and unit systems, drilling rig components, drilling fluids, pressure loss calculations, casing, well cementing, and directional drilling. Prerequisites: ENGR 112; MATH 152; PHYS 218.

PETE 285. Directed Studies. Credit 1 to 4. Special problems in various areas of petroleum engineering assigned to individual students or to groups. Prerequisites: Completion of engineering common body of knowledge courses; approval of department head.

PETE 289. Special Topics in…. Credit 1 to 4. Selected topics in an identified area of petroleum engineering. May be repeated for credit. Prerequisite: Approval of instructor.

PETE 300. Summer Practice. Required. No Credit. Industry practice to familiarize the petroleum engineering student with practices and equipment of the petroleum industry. Approval of advisor required.

PETE 301. Petroleum Engineering Numerical Methods. (2-3). Credit 3. Use of numerical methods in a variety of petroleum engineering problems; numerical differentiation and integration; root finding; numerical solution of differential equations; curve fitting and interpolation; computer applications; introduction to the principles of numerical simulation methods. Prerequisites: MATH 308, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 310. Reservoir Fluids. (3-3). Credit 4. Thermodynamic behavior of naturally occurring hydrocarbon mixtures; evaluation and correlation of physical properties of petroleum reservoir fluids including laboratory and empirical methods. Prerequisites: PETE 311; CHEM 107; MEEN 315; MATH 308 or registration therein; junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 311. Reservoir Petrophysics. (3-3). Credit 4. Systematic theoretical and laboratory study of physical properties of petroleum reservoir rocks; lithology, porosity, elastic properties, strength, acoustic properties, electrical properties, relative and effective permeability, fluid saturations, capillary characteristics, and rock-fluid interaction. Prerequisites: MATH 251; PHYS 218; GEOL 104 or registration therein; junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 314. Transport Processes in Petroleum Production. (3-0). Credit 3. Theory and application of fluid mechanics (statics; mass, energy, momentum balances; laminar and turbulent flow, Reynolds number, Moody diagram; non-Newtonian fluid flow; multi-phase flow; flow in porous media, non-Darcy flow); heat transfer; transport phenomena analogies; analysis and selection of pumps, compressors and heat exchangers. Prerequisites: MEEN 315; junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 321. Formation Evaluation. (3-3). Credit 4. Well logging methods & evaluation of well logs for formation evaluation; basic logging principles, theory of tool operation, open hole log analysis to estimate rock and fluid properties, including porosity, net pay thickness and saturation; capillary pressure-saturation relationships, shaly sand analysis, core-log integration and resource determination. Prerequisites: PETE 301, PETE 310, PETE 311; GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.
Note: Pending Change for PETE 321, Undergraduate Catalog 137, Prerequisites: PETE 301, PETE 311; GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 322. Geostatistics. (3-0). Credit 3. Introduction to geostatistics; basic concepts in probability and univariate statistics; bivariate statistics and spatial relationship; covariance and correlation; second order stationarity; variogram estimation and modeling; spatial estimation and reservoir modeling; simple and ordinary kriging; uncertainty analysis; estimation versus conditional simulation; sequential Gaussian simulation. Prerequisites: Senior classification, petroleum engineering majors only; or approval of instructor.

PETE 323. Reservoir Models. (3-0). Credit 3. Determination of reserves; material balance methods; aquifer models; fractional flow and frontal advance; displacement, pattern, and vertical sweep efficiencies in waterfloods; enhanced oil recovery processes; design of optimal recovery processes. Prerequisites: PETE 301, PETE 310, PETE 311; GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 324. Well Performance. (3-0). Credit 3. Steady-state, pseudosteady-state, and transient well testing methods to determine well and reservoir parameters used in formation evaluation; applications to wells that produce gas and liquid petroleum; rate forecasting; deliverability testing. Prerequisites: PETE 301, PETE 310, PETE 311; GEOL 404, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 325. Petroleum Production Systems. (1-3). Credit 2. Introduction to production operations and oil field equipment: multiphase flow in pipes, bottomhole pressure prediction, inflow/outflow performance, production systems and backpressure analysis, hydraulic fracturing fluids and equipment; downhole and artificial lift equipment, tubulars, workover/completion nomenclature and procedures; produced fluids, fluid separation and metering, safety systems, pressure boosting and monitoring. Prerequisites: PETE 301, PETE 310, PETE 314, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 335. Technical Presentations I. (1-0). Credit 1. Preparation of a written technical paper on a subject related to petroleum technology and an oral presentation of the paper in a formal technical conference format; oral presentations judged by petroleum industry professionals. Prerequisites: COMM 205, junior or senior classification, petroleum engineering majors only; or approval of department head.

PETE 400. Reservoir Description. (2-3). Credit 3. An integrated reservoir characterization and design experience for senior students in petroleum engineering, geology and geophysics; includes using geophysical, geological, petrophysical, and engineering data; emphasis on reservoir description (reservoir and well data analysis and interpretation), reservoir modeling (simulation), reservoir management (production optimization), and economic analysis (property evaluation). Prerequisite: Junior or senior classification or approval of instructor. Cross-listed with GEOL 400.

PETE 401. Reservoir Simulation (2-3). Credit 3. Solution of production and reservoir engineering problems using state-of-the-art commercial reservoir simulation software, using data commonly available in industry, emphasis on reservoir description, reservoir model design and calibration, production forecasting and optimization, economic analysis and decision making under uncertainty. Prerequisite: PETE 310, PETE 321, PETE 323, PETE 324, PETE 325, PETE 403, senior classification, petroleum engineering majors only; or approval of instructor.

PETE 403. Petroleum Project Evaluation. (3-0). Credit 3. Analysis of investments in petroleum and mineral extraction industries; depletion, petroleum taxation regulations, and projects of the type found in the industry; mineral project evaluation case studies. Prerequisites: PETE 301, PETE 310, PETE 311, PETE 314, junior or senior classification, petroleum engineering majors only; or approval of instructor.

Note: Pending Change for PETE 403, Undergraduate Catalog 137, Prerequisites: PETE 301 or registration therein, PETE 311, junior or senior classification, petroleum engineering majors only; or approval of instructor.

PETE 405. Drilling Engineering. (3-0). Credit 3. The design and evaluation of well drilling systems; identification and solution of drilling problems; wellbore hydraulics; well control; casing design; well cementing; wellbore surveying. Prerequisites: PETE 225, PETE 321, PETE 325, PETE 403, senior classification, petroleum engineering majors only; or approval of instructor.

PETE 406. Advanced Drilling Engineering. (3-0). Credit 3. Well control; underbalanced drilling; offshore drilling; horizontal, extended reach, multi-lateral drilling; fishing operations. Prerequisite: PETE 405.
PETE 410. Production Engineering. (3-0). Credit 3. Fundamental production engineering design, evaluation and optimization for oil and gas wells, including well deliverability, formation damage and skin analysis, completion performance, and technologies that improve oil and gas well performance (artificial lift and well stimulation). Prerequisites: PETE 321, PETE 323, PETE 324, PETE 325, PETE 403.

PETE 416. Production Enhancement. (3-0). Credit 3. Design, diagnosis and solution of production problems, and optimization of the technologies that increase oil and gas well performance; integration of the different elements of a production system to maximize recovery from a field. Prerequisite: PETE 410.

PETE 435. Technical Presentations II. (1-0). Credit 1. Preparation of a written technical paper on a subject related to petroleum technology and an oral presentation of the paper in a formal technical conference format; oral presentations are judged by petroleum industry professionals at the departmental student paper contest held during the same academic year. Prerequisites: PETE 335, satisfactory performance in PETE 335 student paper contest, senior classification, petroleum engineering majors only; or approval of department head.

PETE 485. Directed Studies. Credit 1 to 5. Special problems in various phases of petroleum engineering assigned to individual students or to groups. Prerequisites: junior or senior classification and approval of department head.

PETE 489. Special Topics in…. Credit 1 to 4. Selected topics in an identified field of petroleum engineering. Prerequisite: approval of instructor. May be repeated for credit.
One of the unique features of the Curriculum in Petroleum Engineering at Texas A&M University is a requirement that students have summer practical experience - at least six weeks full-time employment in exploration and production with an oil and gas company or oilfield services company. This requirement permits our students to see how subjects they have studied are applied in industry, become familiar with practices and equipment of the petroleum producing industry, and gain valuable job experience. While only one six-week summer work is experience is required, multiple summer work experiences are suggested and encouraged.

Completion of the requirement must be documented by the student before registration in senior level courses. The documentation consists of a Student Intern Report, prepared by the student, a Summer Internship Evaluation prepared by the student intern’s supervisor, and a letter from the student's employer stating the time period employed and the nature of the work experience. These documents are prepared at the end of the internship that follows completion of the Junior Year petroleum engineering courses, and are available to the Undergraduate Curriculum Committee for use in program evaluation. It is the general policy of the Petroleum Engineering Department to assist students in completing this requirement.

Scholastic Performance Requirements for Petroleum Engineering Undergrads

Admission to the petroleum engineering major degree sequence of courses will be carried out in two stages. Admission to upper division (PETE) from the lower division (PETL) will be subject to satisfactory completion of the common body of knowledge courses and GPR criteria. Admission to any upper level petroleum engineering courses will be subject to completion of prerequisites.

All students, whether currently enrolled or seeking to transfer, who wish to pursue an academic program leading to a baccalaureate degree in petroleum engineering at Texas A&M University must satisfy each of the following requirements.

I. Admission to Upper Division and Sophomore Engineering Courses

For admission to upper division in the Petroleum Engineering major (PETE) from the lower division Petroleum Engineering major (PETL).

1. The student must have a grade of "C" or better for each Common Body Knowledge (CBK) course. These courses are MATH 151 and 152, CHEM 107 and 117, PHYS 218, PHYS 208, ENGL 104, ENGR 111 and 112 or approved course substitutions. Any CBK course must be repeated before progressing in prerequisite course sequences if a student receives a final grade of "D" or "F".

2. Automatic admission to upper division status (PETE) will be granted to PETL students who meet minimum requirements of 2.50 TAMU Resident GPR, and 2.75 CBK GPR (CBK using the best effort in each course). Additional admissions to upper division may be made for students who do not meet these requirements based on available space. Students who are on scholastic probation will not be admitted to upper division.

II. Admission to Junior Petroleum Engineering Courses

In addition to the above requirements for upper division, to be admitted to the junior petroleum engineering courses (the last two years of study), the student must have:

Completed the following basic courses: COMM 205, GEOL 104, MEEN 221 and 315,
CVEN 305, MATH 251 and 308, PETE 225 and 311, or approved course equivalents.
1. A grade of “C” or better is required in GEOL 104 and PETE 225 before progressing in
 the prerequisite course sequence
2. Cumulative TAMU Resident GPR of 2.0 or higher and PETE major GPR of 2.0 or
 higher.
 a. Note that the PETE major courses are comprised of all required PETE and GEOL
 courses included in the Curriculum in Petroleum Engineering

III. Admission to Senior Petroleum Engineering Courses
In addition to the above requirements for upper division and junior petroleum engineering
courses, to be admitted to the senior petroleum engineering courses (the final year of study), the
student must have:
1. Completed the following courses: GEOL 404; and PETE 301, 310, 314, 321, 323, 324,
 325, 335, and 403.
2. Cumulative TAMU Resident GPR of 2.0 or higher and PETE major GPR of 2.0 or
 higher.
 a. Note that the PETE major courses are comprised of all required PETE and GEOL
 courses included in the Curriculum in Petroleum Engineering
3. Completed the summer practice requirement (PETE 300)

MINOR FIELD OF STUDY
An upper division petroleum engineering student may declare one minor, consisting of
prescribed courses that focus on a single content area or an interdisciplinary and/or comparative
perspective on more than one area. The minor comprises 15 to 19 hours with a minimum of 6 in
residence at the 300-400 level. Intent to pursue a minor must be made and the approval process
completed before the student applies for graduation. The minor will be recognized on the
transcript after graduation, but not on the diploma.

Upper division students wishing to pursue a minor may obtain an approval form from the
minor granting department. No minor approval form is necessary for Business Administration,
BUAD, or Mathematics, MATH (upper division students may submit a plan for completion and
request to add the BUAD or MATH minor through their academic advisor). The minor approval
form must be signed by the minor-granting department and returned to the petroleum
engineering department, where the minor program will be added to the student’s degree
requirements. The student, minor-granting department, and petroleum engineering department
retain a copy of the signed approval form. The petroleum engineering department retains
responsibility for advising the student after he/she obtains approval from a minor-granting
department. Note that departmental policy may place additional restrictions beyond those of the
minor granting department on courses used to satisfy minor requirements, as appropriate for
petroleum engineering majors. As examples, for the MATH minor PETE students may not
include MATH 417; and for the GEOL or GEOP minors, PETE students may not include GEOL
400, PETE 400, or PETE 401.

A decision to pursue a minor should not be made lightly. Failure to complete requirements
for the minor may delay graduation.
The purposes of this document are:
- to define the term scholastic deficiency
- to provide guidelines for scholastic deficiency and academic probation
- to set readmission policies

Scholastic Deficiency

An undergraduate student enrolled in the College of Engineering is scholastically deficient when:

a) His or her semester grade point ratio (GPR) is less than 2.00; or
b) His or her cumulative grade point ratio is less than 2.00; or
c) The cumulative grade point ratio in his or her major field of study is below a 2.00; or
d) He or she is not meeting college and/or major course of study grade point requirements; or
e) The student does not meet additional requirements specified by the department for their majors. (This can include not making satisfactory academic progress retaking certain courses when D grades are made, maintaining minimum GPRs in major field, dropping below 2.0 in semester grades, etc.)

In the event an undergraduate student becomes scholastically deficient, he or she may, after review by his or her academic Dean or designee, be:

a) Suspended from the university for deficient scholarship; or
b) Permitted to continue in school on scholastic probation; or
c) Warned of scholastic deficiency; or
d) Blocked from continued enrollment in his or her college or major.

Probation Guidelines

GPR \(\geq \) 2.0 overall and in major field - good academic standing
GPR < 2.0 overall or in major field - scholastically deficient

- FRESHMEN
 - Category 1: Grade point (GP) deficiency from 1 through 6 GP overall or in major field--academic probation, but student may be allowed to continue in school under probationary conditions.
 - Category 2: GP deficiency from 7 to 23 GP overall or in major. Blocked from registration with review by advisor. Departmental advisors can lift block and set terms of probation for those students allowed to continue in school.
 - Category 3: GP deficiency greater than 23 GP overall or in major--registration block from the University.

- SOPHOMORES
 - Category 1: Grade point (GP) deficiency from 1 through 6 GP overall or in major field--academic probation, but student may be allowed to continue in school under probationary conditions.
 - Category 2: GP deficiency from 7 to 17 GP overall or in major. Blocked from registration with review by advisor. Departmental advisors can lift block and set terms of probation for those students allowed to continue in school.
 - Category 3: GP deficiency greater than 17 GP overall or in major--registration block from the University.

- JUNIORS
 - Category 1: Grade point (GP) deficiency from 1 through 6 GP overall or in major field--academic probation, but student may be allowed to continue in school under probationary conditions.
 - Category 2: GP deficiency from 7 to 13 GP overall or in major. Blocked from registration with review by advisor. Departmental advisors can lift block and set terms of probation for those students allowed to continue in school.
 - Category 3: GP deficiency greater than 13 GP overall or in major--registration block from the University.

- SENIORS
 - Category 1: Grade point (GP) deficiency from 1 through 6 GP overall or in major field--academic probation, but student may be allowed to continue in school under probationary conditions.
 - Category 2: GP deficiency from 7 to 9 GP overall or in major. Blocked from registration with review by advisor. Departmental advisors can lift block and set terms of probation for those students allowed to continue in school.
 - Category 3: GP deficiency greater than 9 GP overall or in major--registration block from the University.

NOTE: Students on academic probation may be blocked from registration until final grades are posted, or until satisfactory progress has been demonstrated.

Probationary Conditions for Scholastically Deficient Students

General probationary terms:

- Category 1: C + deficiency for deficiency of \(\leq \) 6 grade points
- Category 2: For students deficient in the ranges listed according to classification, and allowed by advisors to continue in school, C+ (terms advisor stipulates) but no less than C + 6. Advisors will specify courses and terms of probation. As a general rule, students are expected to overcome any GP deficiencies within two semesters.
- Category 3: University-level Dismissal. Refer to Student Rule 12.2 at http://student-rules.tamu.edu/

Readmission

A student who does not make the terms of probation will be blocked from registration in the College of Engineering for at least one calendar year. Readmission to the College of Engineering will be considered and will depend on demonstrated evidence of maturity, proven academic progress based on good academic achievement at another institution of higher learning, or other factors which could lead to success. Students in Category 3 or those who are 10 GPs deficit in their
major, will not be readmitted unless a compelling case can be made. Students in Category 2 must have the recommendation of the departmental advisor before consideration by the dean.

~ ~ ~ ~ ~ ~ ~ Students' Rights ~ ~ ~ ~ ~ ~ ~

Students placed on academic probation or registration block may appeal the decision in accordance with the established procedures in the Texas A&M University Rules.

Revised: 5/22/13

NOTES for undergraduate students in the Harold Vance Department of Petroleum Engineering (PETE/PETL):

1. Departmental policy on scholastic probation, suspension (block), and readmission must comply with Dwight Look College of Engineering policy, and Texas A&M University policy. These policies may change over time, through the processes of Texas A&M University, the Dwight Look College of Engineering, and the Harold Vance Department of Petroleum Engineering.

2. Note that the Freshman/Sophomore/Junior/Senior designations in the above policy correspond to Texas A&M University classifications U1/U2/U3/U4 respectively, as discussed in TAMU Undergraduate Catalog 136 (2013-2014).

3. When a PETE/PETL student is scholastically deficient, and is allowed to continue under scholastic probation, note that if the probation terms are not met, the student, “will be blocked from registration in the College of Engineering for at least one calendar year”, and that readmission following suspension is not automatic. Application for readmission is through the Office of Admissions (see admissions.tamu.edu for requirements and deadlines).

4. The statement, “GPR ≥ 2.0 overall and in major field - good academic standing,” and any notation of good academic standing on TAMU transcript (official or unofficial) refers to TAMU Resident (cumulative) GPR of 2.000 or higher only, and only applies to part b) of the definition of scholastic deficiency. A student with TAMU Resident GPR of 2.000 or higher may still be scholastically deficient under the parts a), c), d), or e) of the definition of scholastic deficiency.
DEPARTMENTAL SCHOLARSHIP REQUIREMENTS

Scholarship Awards:
The department has two merit scholarship programs and a continuing student scholarship program. Scholarship amounts are based on availability of funds and are paid in equal installments. The minimum is $500 per semester. The first installment will be paid at the beginning of the fall semester and the second at the beginning of the spring semester. The student must continue to meet departmental scholarship requirements to receive the second installment of the scholarship, and can only receive one departmental scholarship per academic year. If a student qualifies for both a merit and continuing student scholarship, the larger scholarship will be awarded.

Merit scholarships for entering freshmen are based on SAT and/or ACT scores and high school rank. The higher of the SAT and/or ACT test scores will be used. The student must major in petroleum engineering at Texas A&M University. He or she must enroll in a minimum of 13 semester credit hours that count toward a degree in petroleum engineering, which must include PETE 201 the first semester, may include MATH 150, military science courses, or other courses approved by the departmental academic advisor.

Merit scholarships for current PETE students require that a student be in good standing, have a 3.0 minimum cumulative GPR and a 3.0 minimum GPR in the previous semester, and be making satisfactory progress toward his or her petroleum engineering degree. Except for graduating seniors as noted below, the student must enroll for a minimum of 13 semester credit hours that count toward a degree in petroleum engineering and satisfactorily complete at least 13 semester credit hours. The student must be enrolled in a PETE class by the third semester of enrollment. Seniors graduating in December or May that are in their last semester must be enrolled in a minimum of 12 credit hours to qualify for a scholarship. Exceptions to the 12 credit hour rule may be granted to last semester graduating seniors on a case-by-case basis. If the exception is granted, the student may be awarded a proportional amount of the scholarship. A student is not in good standing if he or she is on conduct probation or honor violation probation. A student is making satisfactory progress toward his or her petroleum engineering degree as long as they are moved to upper level within three (3) semesters.

Merit scholarships for transfer students from other departments within Texas A&M University will be awarded on a similar basis as currently enrolled PETE students. Scholarships for transfer students from junior colleges and other universities will be evaluated on a case-by-case basis. Transfer students must be enrolled in a PETE class by the second semester of enrollment to continue eligibility for a scholarship.

Students must apply for continuing student scholarships which require a 2.5 minimum cumulative GPR. Applications are due each year by February 1st. Most continuing student scholarships are awarded only for the academic year, unless otherwise specified.

Scholarship Continuation:
The academic achievement of all current PETE/PETL students is reviewed each semester. Scholarship continuation is determined as follows:

1.) Good Standing:
 Merit Programs: Those who achieve a minimum previous semester and cumulative GPR of 3.0, complete 13 credit hours during the previous semester toward their petroleum engineering degree, and register for 13 credit hours for the upcoming semester toward their petroleum engineering degree, will remain on scholarship. A declared minor is considered a part of the petroleum engineering degree program.
 Continuing Students Program: Those who achieve a minimum cumulative GPR of 2.5 or above will remain on scholarship for the academic year.

2.) Probation:
 Merit Programs: If the student’s semester or cumulative GPR falls below 3.0, and/or if they do not complete 13 credit hours the previous semester, the student will be put on probation for one semester with their scholarship intact to improve substandard performance.
 Continuing Student Program: If the student’s cumulative GPR falls below 2.5, the student will be put on probation for one semester with their scholarship intact to improve substandard performance.

3.) Cancellation: Scholarships will be cancelled in the following situations:
 a.) The student’s cumulative GPR is less than 2.0.
 b.) For a merit scholarship, the student’s semester or cumulative GPR is less than 3.0 after one semester of probation.
 c.) For a continuing student multi-year scholarship, the student’s cumulative GPR is less than 2.5 after one semester of probation.
 d.) For a merit scholarship, the student on probation does not satisfactorily complete at least 13 semester credit hours of approved course work.
 e.) For a merit scholarship, the student does not register for 13 credit hours toward their petroleum engineering degree for the upcoming semester. For a continuing student scholarship, the student does not register for 12 credit hours (full-time).
 f.) The student transfers out of the department or leaves the university.
 g.) The student is on conduct probation or honor violation probation, and if the length of the probation/deferred suspension is greater than one semester. If the conduct or honor violation probation/deferred suspension begins before funds have been disbursed for the semester, the student is not eligible for the funds and the scholarship will be cancelled. If the conduct or honor violation probation/deferred suspension begins after funds have been disbursed for the semester, the student keeps the funds for the semester as long as the conduct or honor probation/deferred suspension period is not greater than one semester.
 h.) Student has not been moved to upper level after three (3) semesters.

The student must write a thank you letter to the donor and provide a signed copy to the department in order to retain any scholarship he/she has been awarded. If the student does not write the thank you letter, he/she may be ineligible for a scholarship the following semester.
Q-DROPS

Students may drop courses without record according to university and college of engineering policies.

Unless otherwise restricted, a student may drop a course without penalty through the 50th class day of a fall or spring semester, the 15th class day of summer term or the 35th class day of a 10-week summer semester (as noted on the University Academic Calendar). The symbol Q shall be given to indicate a drop without penalty. Undergraduate students will normally be permitted three Q-drops during their undergraduate studies. Additional Q-drops will be allowed only in unusual circumstances as determined by a student's departmental academic advisor and dean.

A student may not drop a co-requisite course unless the other courses are also dropped. For example, MATH 151 is corequisite for ENGR 111 and PHYS 218. A student may not drop MATH 151 and remain in ENGR 111 and PHYS 218.

A student who drops a course after the Q-drop period has elapsed will receive a grade of F unless unusual circumstances exist as determined by the student's dean. The term "no grade" may be recorded by the dean of the student's college if it is determined such circumstances do exist.

CO-ENROLLMENT

The Petroleum Engineering Department discourages co-enrollment (concurrent enrollment) at Texas A&M and any other institution. However, there may be extenuating circumstances in which the department may allow co-enrollment for upper level students (PETE major).

Students wishing to enroll in classes at another institution concurrently with enrollment at Texas A&M must receive prior written approval of the Department Head and the Academic Dean. The Department Head’s approval is required prior to requesting Academic Dean's approval. International students must also obtain approval of the International Student Services office.

STUDENT PAPER CONTEST

The Petroleum Engineering Department requires, as a condition for graduation, that its students prepare two technical presentations and present them in public forums. The mechanism for accomplishing this requirement is through the courses PETE 335 and PETE 435, which must be taken during the fall semester of the junior year and fall semester of the senior year, respectively; and participation in the departmental student paper contests held during the same academic years in which PETE 335 and PETE 435 are taken, typically held on a Saturday, early in the Spring semester.

TAMU Student Chapters of the
SOCIETY OF PETROLEUM ENGINEERS (SPE)
AMERICAN ASSOCIATION OF DRILLING ENGINEERS (AADE)

It is the general policy of the Petroleum Engineering Department to encourage all undergraduate students (PETL and PETE) to actively participate in the formal programs and the social activities sponsored by the Student Chapters of SPE and AADE.

The major benefit to students is the enhancement of their educational experiences at A&M through formal and informal association with professionals who are actively working in the petroleum exploration and production industry.
ENGINEERING HONORS CERTIFICATE

The Petroleum Engineering Department encourages all qualified students (Honors Program eligible) to participate in the Engineering Honors Certificate. Requirements are available at the Engineering Academic & Student Services web site.

TRANSFER OF COURSE CREDITS TO BS-PETE DEGREE REQUIREMENTS

There are two ways in which course credits earned at another institution of higher education may be transferred and applied to degree requirements. The first is transfer by equivalency, as indicated on the Transfer Course Equivalency system on the Howdy portal, or as determined by the Registrar’s Office. The second type of transfer credit is transfer by title, and must be initiated through a student’s academic advisor. In general, a course must be a reasonable substitution for the corresponding TAMU course, as determined by the PETE departmental Undergraduate Advisor.

Departmental policy does not allow for consideration of transfer by title of credit for 300-499 numbered TAMU courses, except when the course meets degree requirements of an ABET accredited engineering curriculum at the institution (college or university) at which the course was completed.