IT'S TIME

TO TRANSFORM
BIOMEDICAL ENGINEERING
EDUCATION
We’re dedicated to solving the world’s greatest health problems, and we want you to be a part of our efforts.

Our goal: To become a global leader in biomedical engineering research and education – and we’re well on our way.

Our faculty continues to engineer innovative research solutions that have the potential to greatly enhance and even save lives, pioneering medical breakthroughs and technologies to diagnose, prevent and treat disease. We remain committed to creating a truly rewarding educational environment – one that provides our students with vital engineering competencies, entrepreneurial knowledge, and the leadership skills they will need to become outstanding biomedical engineers.

It’s time to partner with us.

Michael McShane, Ph.D.
Michael McShane
Interim Head, Department of Biomedical Engineering
Texas A&M University
We’ve been pioneering biomedical engineering education and research for five decades, and we’re growing our efforts on all fronts.

Biomedical engineering has been a part of Texas A&M University for more than 40 years, with our undergraduate program recognized as the fifth accredited program of its kind in the nation.

Having been officially established as a department in 2002, the Department of Biomedical Engineering is now a designated signature program within the Dwight Look College of Engineering at Texas A&M University.

Focusing on key areas such as biomedical sensing and imaging, biomechanics, and biomaterials, we continue to grow into an international leader in biomedical engineering research and education that includes the development, testing and commercialization of cutting-edge technologies.
WHERE WE ARE GOING

INCREASING OUR ENROLLMENT
to meet the critical need for more engineers

EXPANDING OUR FACULTY
by attracting top minds from academia and industry

PROVIDING THE BEST RESOURCES
by enhancing classrooms and laboratories

OFFERING MORE OPPORTUNITIES
through undergraduate research experiences, study abroad and internships
The Department of Biomedical Engineering at Texas A&M University is embarking on a growth plan that will make it the department of choice for biomedical engineering education and research, producing the highest-quality graduates while achieving innovations and breakthroughs in vital areas of biomedical engineering.
MAKING THE MATERIALS
THAT MATTER
to overcome age, injury, illness and disease

Our faculty members are making biomaterials that can repair or replace tissue; serve as artificial tendons, ligaments, and heart valves; act as coatings for hip replacements; and even improve the way diabetes is managed.

Dr. Melissa Grunlan is developing technology that will allow those suffering from diabetes to use an implantable glucose sensor to monitor their blood sugar in a safer and more accurate way.
Dr. Maitland is developing an innovative method for treating potentially fatal brain aneurysms by filling them with shape-changing polymer foams. His work could provide doctors with a more effective and less risky method for treating aneurysms, which can rupture and cause damage that is debilitating or even fatal.
From the inner workings of a single cell to the mechanical behavior of bones, issues and organs, this knowledge provides the foundation for major medical advancements.

Dr. Michael Moreno is exploring the effects of traumatic brain injuries.

By understanding its mechanical properties, Dr. Roland Kaunas is developing bone-regeneration therapies.
Dr. Criscione is developing a device to rehabilitate the hearts of people suffering from congestive heart failure. His device fits around the heart and restores proper motion to the way a heart beats, helping rebuild damaged tissue. Think of it as physical therapy for the heart – and a potential cure for a condition that affects more than five million people.
Dr. Vladislav Yakovlev is improving ultrasound technology. Dr. Kristen Maitland is helping doctors better detect oral cancer.
Dr. McDougall is working to enhance traditional magnetic resonance imaging (MRI) so that it can be used as a tool for determining the effectiveness of breast cancer treatments. Her research could significantly reduce the time needed by doctors to determine if a treatment is working so that breast cancer patients receive the most effective treatments as soon as possible.
JOIN US
AS WE ENGINEER A DIFFERENCE IN HEALTH CARE

SCAN THIS QR CODE WITH YOUR SMART DEVICE OR VISIT ENGINEERING.TAMU.EDU/BIOMEDICAL TO LEARN MORE.
OPPORTUNITIES

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Scholarships</td>
<td>$ 25,000</td>
</tr>
<tr>
<td>Graduate Fellowships</td>
<td>$ 50,000</td>
</tr>
<tr>
<td>Graduate Student Recruitment Endowment</td>
<td>$ 150,000</td>
</tr>
<tr>
<td>Study Abroad Endowment</td>
<td>$ 100,000</td>
</tr>
<tr>
<td>Professorships</td>
<td>$ 1 million</td>
</tr>
<tr>
<td>Faculty Chairs</td>
<td>$ 1.5 million</td>
</tr>
<tr>
<td>Department Head Chair</td>
<td>$ 5 million</td>
</tr>
<tr>
<td>Named Classroom/Laboratory</td>
<td>$ 2 million</td>
</tr>
<tr>
<td>Named Department</td>
<td>$ 10 million</td>
</tr>
<tr>
<td>Named Building</td>
<td>$ 10 million</td>
</tr>
<tr>
<td>Department Excellence Fund</td>
<td>Any amount</td>
</tr>
</tbody>
</table>

Regan Chessher | Director of Development
979.862.6415 | Cell 979.324.7404 | rchessher@txamfoundation.edu
5007 Emerging Technologies Building | College Station, Texas 77843-3120

giving.tamu.edu