Electric Cars for Everyone?

Abstract: Currently, there are more than 1.1 billion vehicles in the world. Internal combustion engines power most of these vehicles. If a low-cost electric car with no greenhouse gas emissions could be produced and made broadly available, this would have a significant impact on our global carbon footprint. Currently, the only zero-emission vehicles are electric vehicles powered by rechargeable lithium-ion batteries (e.g., Tesla Model S) or hydrogen-fueled proton exchange membrane (PEM) fuel cells (e.g., Toyota Mirai). Fuel cell electric vehicles have several advantages over battery electric vehicles for driving ranges greater than 300 miles, such as significantly lower vehicle weight, six-times higher specific energy density, and instant re-fueling. Although automakers have engineered solutions to many of the major hurdles of bringing fuel cell electric vehicles to the market place, the high cost of the required precious metal platinum (Pt) electrodes remains as one of the few major factors limiting the mass commercialization of low-cost fuel cell electric vehicles. In our laboratory, we have investigated two routes to overcome this limitation. In our first approach, we have developed a new process to fabricate high surface area fuel cell electrodes based on super proton conductive nanofibers, which results in high fuel cell power densities at ultra-low Pt loadings. These results were motivated by our exploration into the fabrication of Nafion nanofibers via electrospinning, where we observed super high proton conductivity of a single Nafion nanofiber (as high as 1.5 S/cm) relative to Nafion bulk film conductivity (~0.1 S/cm). The discovery, fabrication, properties, and fuel cell performance of super proton conductive nanofibers electrodes will be discussed. In our second approach, we have pursued solid-state anion exchange membrane (AEM) alkaline fuel cells (AFCs), which do not require the expensive components (Pt) of their PEM fuel cell counterpart, operating with much less expensive non-noble metal catalysts (e.g., Ni). We have developed a new AEM chemistry (hydroxide-conducting polymerized ionic liquid block copolymers), which addresses critical issues impeding AEM-AFC technology and provides a platform to investigate improving fuel cell performance. AEM synthesis, morphology, transport properties, and fuel cell performance will be discussed.

Yossef A. Elabd, Ph.D.

(Joe) Y. A. Elabd is a professor, associate department head, and director of the undergraduate program in the Department of Chemical Engineering at Texas A&M University. He received his PhD and BS both in chemical engineering from Johns Hopkins University (2001) and University of Maryland, Baltimore County (1995), respectively. From 2001-2003, Prof. Elabd served as an NRC postdoctoral fellow at the Army Research Laboratory. Prior to joining Texas A&M University, Prof. Elabd served on the faculty at Drexel University for 11 years. Prof. Elabd is Fellow of the American Physical Society and served as a Senior Fellow at the Instituto di Studi Avanzati, Università di Bologna. He has also received the NSF CAREER Award, DuPont Science and Engineering Award, and ARO Young Investigator Award. His research interests include electrochemical energy (fuel cells, batteries, capacitors) and polymer science (ionic polymers, block copolymers, polymer membranes, polymer nanofibers, transport and thermodynamics in polymers).