Admission Control for Tandem Loss Networks

Motivated by communication networks, we study an admission control problem for a loss system consisting of two finite capacity service stations in series. Customers arrive to station 1 according to a Poisson process and a gatekeeper who has complete knowledge of the number of customers at both stations decides to accept or reject each arriving customer. If a customer is rejected, a cost c_1 is incurred. If an admitted customer finds that station 2 is full at the time of his service completion at station 1, he leaves the system and a cost c_2 is incurred. We obtain structural results on the optimal admission control policy for minimizing the long-run average loss cost per unit time. Specifically, we prove that if the capacity of either station is one, the optimal policy is either to accept a customer whenever there is space at station 1, or to admit an arrival only if the customer will not be lost at station 2 (hence, there is no middle ground). For the general model, we first present sufficient conditions under which these two policies are still optimal and then provide the structure of the optimal policy for systems with small buffer sizes. Using these insights, we design heuristic admission control policies. Our numerical results indicate that in general the heuristics yield near optimal long run average cost performance.

This is joint work with Daniel Silva (Georgia Institute of Technology) and Bo Zhang (IBM Research)

Dr. Hayriye Ayhan
Professor
School of Industrial & Systems Engineering
Georgia Institute of Technology

Dr. Hayriye Ayhan is a professor in the School of Industrial and Systems Engineering at Georgia Institute of Technology. She received her Bachelor's in Industrial Engineering from Bosphorous University (Turkey) and her PhD from Texas A&M University (in Industrial Engineering). Her research interests include performance analysis of queues with heavy-tailed distributions and Markov decision processes (with applications to admission control, queues with flexible servers and inventory/production control). She has published numerous papers on these topics in a variety of journals in applied probability, operations research and control. Her research on these topics has been supported by various NSF grants including the CAREER Award. She is a member of the Institute of Operations Research and Management Sciences (INFORMS) and she is the secretary and the treasurer of the INFORMS Applied Probability Society since 1999.