Fluorescence imaging with UV radiation has been used in research settings for the last two decades. It was conceived as a tool sensitive to alteration in metabolism, protein synthesis and extracellular matrix remodeling.

Initially we proposed to detect atherosclerotic plaques and then built clinical devices for instantaneous cervical diagnosis and later for laparoscopic ovarian cancer evaluation and now endoscopy in the fallopian tubes. Recently we adapted the technology to create high-contrast images through simple combination of multiple images for colonic lesion detection. In the past, the performance of many optical diagnostic imaging systems has been evaluated through sensitivity and specificity assessment of a standalone system. However, there are visual detection tasks where high-contrast images of difficult-to-observe lesions could become an integral role in meeting detection rate targets for physicians.