Almost any technology that distinguishes the 20th and 21st centuries from previous history has the imprint of electrical and computer engineering (ECE) — electric power, radio, television, and radar; satellite communications; global positioning systems; medical diagnostic and procedure systems; smart appliances and cell phones; computers and sophisticated sensors; and control systems used in space exploration, national security, and underwater environments. ECE has advanced national and global prosperity through research, development and application of electrical and information technologies and sciences for the benefit of humanity. By choosing ECE, our graduates embark on an exciting and productive career and help shape a better future for humankind.

Electrical Engineering (EE) is defined by activities that include research, education, or design functions that depend on electrons and photons. EEs can work in any industry or field, including: research and development, design, systems, academia, management, sales, etc. EEs might also continue on to law school or medical school or earn their MBAs. Nearly any company or agency that has engineers on staff will hire EEs. Recent Aggie EE graduates are now working in aerospace, automotive, chemical, computer, electrical, and petroleum fields, as well as for the US government and military.

Computer Engineering (CE) is a dynamic and broadly interdisciplinary field that continues to experience rapid professional growth and impacts every facet of human endeavor. CEs apply knowledge to the design of digital circuits and software in various areas, including: robotics, computers and networks, cellular and mobile devices and systems, pattern recognition, embedded systems, and more. Our recent CE graduates have gone to work in many different industries, including: aerospace, banking, biomedical, corporate business, computer, defense, education, telecommunications, and transportation.

EVERYTHING in modern technology relies on computers, software, communications, electrical components, and power, making ours the most versatile of all the engineering degrees.

Did You Know?

- Texas A&M University is considered the happiest college in the country (Source: Daily Beast, 2013)
- Our university hosts the Big Event, the world’s largest one-day, student-run community service project (bigevent.tamu.edu)
- Texas A&M was the first public university in Texas and is one of very few institutions in the nation to hold a triple designation as a land-grant, sea-grant, space-grant university. (tamu.edu/about/facts)

Meet an Aggie ECE

Howdy!

Here at Texas A&M, I know I am receiving world-class instruction covering a wide range of topics in the electrical engineering field. Already, I have applied skills I have learned in multiple practical applications, from designing and programming a circuit board to control an autonomous UAV to developing an iPhone application... I can choose a job I love in a field that is constantly changing and arovinga, so I will never be bored.

Kate Stuckman ’13
Recipient of Craig Brown Outstanding Senior Engineering Award
Major: Electrical Engineering
Minors: Math & Computer Science

What do we do?

- Antennas
- App/Video game development
- Artificial intelligence
- Biosensors
- Circuits
- Coding/Programming
- Communications
- Control systems
- Digital signals
- Electromagnetics
- Energy management
- Genomic signaling
- GPA/Navagation
- Medical diagnostic systems & imaging
- Microprocessors
- Nanotechnology
- Networking & security
- Optics
- Optimization
- Power electronics
- Power supply & distribution
- RF & microwave systems
- Robotics
- Smart appliances & devices
- Solid-state
- VLSI
- Wireless & mobile systems
ECE Fact Sheet

Academic Info
- 2 majors: Electrical Engineering (ELEN) and Computer Engineering (CEEN)
- >70 faculty members
- >50 undergraduate ECEN courses available
- Nearly 30 state-of-the-art research labs
- Specializations offered in 7 different areas

Why become an Aggie ECE?
- Modern technology would not exist without ECEs.
- EE & CE degrees earn top 10 highest starting salaries for new grads in entry-level positions.
- Undergrad research is encouraged.
- Four of top ten top-paid, high demand careers are directly related to ECE.
- We award departmental scholarships annually.
- Average starting salary for TAMU ECE graduates in entry-level positions is $68,000 (higher than US average).
- Undergrads who meet certain qualifications can be automatically accepted to our graduate programs.
- TAMU is the most heavily-recruited school in TX for leadership positions.
- TAMU has the 2nd highest research expenditures among all US universities. ECE undergrads go on to grad school, law school, medical school, an MBA program or an industry job, or start their own companies. Every industry needs ECEs.
- ECE undergrads who meet certain qualifications are admitted into our ECE graduate program automatically.
- Graduates benefit from being part of the Aggie Network: 645,000 registered members who are primarily former students, Aggies helping Aggies... with career advice, internships, jobs, financial aid and more!

National Rankings
- The Dwight Look College of Engineering ranks 8th among public engineering programs offering bachelor through doctoral degrees and 15th overall, including both public and private institutions.
- The undergraduate Department of Electrical & Computer Engineering ranks 10th among U.S. public institutions.
- Texas A&M University was voted “Best Value” in Texas and is the only public university in the state of Texas ranked in the top 50.
- Our department was ranked 6th for recent graduate starting salaries behind Carnegie-Mellon, Cal Tech, Standford, Harvey Mudd, and the University of Pennsylvania.

Who are We?
- Approximately 900 UG students
- 80% EE; 20% CE students
- 86% male; 14% female
(Data for Fall 2013)

I can make cars communicate, harvest green energy, fight cancer and help send astronauts into space. I am an Aggie ECE.
Edwin Juares Rosales ’11
Major: Electrical Engineering
Minor: Math
Currently: Ph.D. candidate at USC
About: Joining the Aggie family, particularly as an international student, opened up an incredible amount of opportunities for me. I studied for a semester in Qatar, worked as an intern for National Instruments, participated in research with inspiring and talented faculty and served my community. I am now working on my Ph.D. in Control Systems, applying my knowledge to fight cancer. I thank God that I chose to study at Texas A&M.

Thomas Hummel ’11
Major: Computer Engineering
Currently: Circuit Design Engineer at IBM
About: Upon retiring from the Army and looking for a new skill set, I was recommended to look into Texas A&M. The more I read and asked questions about Texas A&M and the Dwight Look College of Engineering, the more I found myself wanting to attend. After taking a tour of the campus and attending an Engineering exhibit at Zachry, the choice was easy to make. And I am ever glad I made that choice, for now I’m living my dream of designing circuits for IBM, right here in Texas.

Diganto Choudury ’12
Major: Electrical Engineering
Minor: Math
Currently: Engineer at Maxim Integrated
About: Coming to Texas A&M was one of my best decisions, as the curriculum was flexible and I had the opportunity to take classes in areas of my interest. Also, I took advantage of the world-class research facilities and labs and completed an undergraduate research thesis my senior year. During my internship and while working full-time now, I am able to apply the concepts acquired in class to solve real-world problems.

Leticia Ibarra ’14
Major: Electrical Engineering
Minor: Physics
Currently: Master’s student at TAMU
About: College is where you experience some of the best years of your life. Four years isn’t a lot, but it’s amazing the many things you experience. By the time I graduate, I will have done things I would’ve never imagined I’d do. I will have visited A&M’s Qatar University in the Middle East, appeared in a nationwide commercial that appears every football season, and worked on building space shuttles at Boeing, among several other events. I was able to experience all of this, and much more, thanks to Texas A&M.

Job hunting?
Texas A&M students and graduates have access to the TAMU Career Center for LIFE!
For more information:
hireaggies.com
jobsforaggies.tamu.edu
careercenter.tamu.edu
Bob Biard ‘54 (B.S., M.S., Ph.D. – EE)
ECEN guest faculty; invented the infrared light emitting diode (IR LED) & MOS ROM; holds 70 U.S. patents & 6 foreign patents

Anthony Wood ‘90 (B.S. – EE)
Invented the digital video recorder (DVR) & Roku (world’s most extensive streaming player); founded 6 companies; VP of Internet TV for Netflix & Advisor for Luminari Capital

Carolyn Kelley ‘86 (B.S. – EE)
ECEN External Advisory & Development Council member; Director of Global Research & Development for PepsiCo

Amy Suhl ‘86 (B.S. – EE)
ECEN External Advisory & Development Council member; VP & CIO for Shell Oil’s Project and Technology business; previously held positions in IT, CP, manufacturing, & chemical sales

Dennis Segers ‘75 (B.S. – EE)
CEO of Tabula, Inc.; previously President, CEO & Director of Matrix Semiconductor, responsible for the design & development of the first 3D integrated circuits; holds 4 U.S. patents

Aggie ECEs Make a Difference!

370,000 former students

How will you give back?

244 Texas A&M Clubs around the world
Old cameras used shutters (Mechanical Engineering) and rolls of film (Chemical Engineering). New cameras are completely ECE-based, where an image is formed on an electronic sensor and stored in memory. Thanks to ECE, cameras are constantly advancing, pictures now have better resolution and are easier to transmit, and effects can easily be applied to images through computer software and phone apps.

Digital recording drastically changed the music industry, allowing musicians to record ageless albums that would preserve their sound forever. Amateurs and professionals alike can even record in their own home studios on their own budgets. ECE has also given us recording software, improved acoustics, wireless sound and devices, and live streaming.

ECEs researching smart grid technology provide environmental-friendly and efficient means of powering our growing, changing world.

“Big Dog,” the autonomous robot, is controlled by an on-board computer system. It operates through a series of sensors that monitor joint position, joint force, ground contact, ground load, etc. Big Dog also incorporates the use of a gyroscope, LIDAR, and a stereo vision system.

Modern medicine would not be what it is today without ECEs who design diagnostic equipment, create apps for medical diagnosis and patient data storage, perform computer-based medical research, and improve medical imaging.

Civil Engineering
- Load calculations
- Protective devices
- Control systems design
- Data information systems for power plants
- Electrical systems for industrial and municipal projects
- Specifications and schematics for electrical equipment and systems
- Technical operation and testing procedures for electronic equipment
Real World ECE

12 examples of ECE’s impact and influence

Communications
- Unmanned and remote controlled devices
- Antennas
- Sensors
- Circuit design
- Device-to-device communications
- Human-to-device communications
- Electronic switch systems
- Satellite and wireless systems

ECE impacts every aspect of modern cars. From chips and sensors to advanced technology systems, ECE has a major influence on transportation. It won’t be long before ECEs create driverless cars!

1

Communications

ECE-designed energy consumption apps allow home owners to control a house’s temperature, appliances, sprinkler and security systems, and lighting from the convenience of a cell phone. Some utility companies even offer discounts for these energy-conscious home owners.

9

Petroleum engineering is a popular field. However, it is not limited to petroleum engineers, as oil and gas companies have many ECE-based needs: power supply design; high-temperature, mixed signal electronics; research investigations; and electronic components for "downhole" tools.

10

Aerospace relies on ECEs to create radiation-hardened chips for flight control, develop aircraft communication and navigation systems and avionics sensors, and lead E3 research and testing. Also responsible for the design and operation of flight data recorders (“black boxes”), ECE-based technology provides valuable information to the industry regarding flight safety.

11

Defense/Military
- Tactical vehicle systems and equipment
- Radar and satellites
- Hardware and software for electronic warfare
- Advanced optics
- Network security
- Cryptography and secrecy systems

12
Whether you choose to study abroad, participate in a Co-Op or internship, or join one of the over 1000 student organizations at Texas A&M University, it’s important to get involved! We strongly encourage our new students to join an academic or social group to help them interact with peers, make friends, build important life skills, and create lasting memories from their college experiences.

The Department of Electrical & Computer Engineering has two student organizations of its own. Eta Kappa Nu (HKN) is our honor society, and students must qualify to be invited to join (hkn.tamu.edu). We are also home to a student branch of the Institute of Electrical & Electronics Engineers (IEEE). Many of our faculty are also members or fellows of this organization, which focuses on helping Aggie ECEs learn more about their future career options and network with industry professionals (ieeetamu.org).

Another activity in which students can become involved with departmental events is ECEN Student Ambassadors. These students, who are selected through an application and interview process, help represent ECEN at department and university events. They bring a unique student perspective to prospective students who are considering ECEN as a major (see academic advisors for more information).

Students with an interest in traveling outside of the United States to learn about other cultures have several international program opportunities. Designed specifically for ECEN students, the summer study abroad options in Brazil or China offer students the chance to study courses from different specialty areas. The Brazil and China trips are led by our own ECEN faculty who are familiar with their respective countries, enhancing the student experience even more. Another option is to study in Doha at Texas A&M University - Qatar during fall, spring or summer.

Participating in a Co-Op or internship is another way for students to get involved, while also gaining valuable work experience and networking with companies in the industry. Many of our students find these opportunities through our SEC Career Fair and through the TAMU Career Center.
Research Groups

Analog and Mixed Signal

Analog and Mixed Signal Research areas in the Analog and Mixed Signal Center include high speed electrical and optical I/O interfaces, clock recovery systems, RF transceivers, harvesting circuits, RF MEMS, active and passive sensors, mmwave circuits, robust signal processing, low-voltage, high-performance analog circuit design; analog mixed-mode fault diagnosis of integrated circuits, power management and biomedical circuits and systems.

Biomedical Imaging, Sensing and Genomic Signal Processing

The Biomedical Imaging, Sensing and Genomic Signal Processing group brings together faculty members from a number of different disciplines to focus on the acquisition and analysis of biomedical images and signals, genomic signal processing, and nano/micro systems for bio/medical applications. A set of core courses provides the student with a background in both medical imaging instrumentation, image processing and analysis, genomic signal processing, and biosensing, and elective courses are available in all areas. Laboratories have been established in magnetic resonance imaging, ultrasound imaging, genomic signal processing, and integrated micro/nano/bio systems.

Computer Engineering and Systems

Computer Engineering offers research opportunities in the areas of computer communications and networks, multimedia, storage systems, parallel and distributed computing and architecture, fault-tolerant computing and design for testing, computer aided design and testing tools, VLSI design and technologies, high-speed networks and architecture, intelligent systems and controls, and real-time systems and their architecture.

Device Science and Nanotechnology

The Device Science and Nanotechnology program in the Department of Electrical Engineering at Texas A&M University encompasses a wide range of research topics from electrooptics to quantum computing. The electrooptics program encompasses a range of technologies that make use of optical and electronic phenomena. Research areas of primary interest include fiber optics, integrated optics and semiconductor lasers.

Electric Power Systems and Power Electronics

Two major efforts constitute the program: power systems and power electronics. Faculty expertise from both power systems and power electronics is frequently combined in research activities. Power systems research is performed in the areas of analysis, reliability, monitoring, and control and protection of power systems. Some of the faculty also have a strong interest in control systems, digital signal processing, data communications and intelligent system applications. Power electronics research is performed in the areas of motor drives, power electronic converters, utility interface issues, active filters, and electric and hybrid vehicles. Other faculty focus on power quality and diagnostics of electrical machines.

Electromagnetics and Microwaves

Research activities in electromagnetics and microwaves span a broad spectrum of applications, in particular, the theoretical and experimental aspects of antennas, electromagnetic theory, electromagnetic wave scattering, active and passive microwave and millimeter wave circuits, linear and non-linear optical or microwave guiding systems and microstrip antennas.

Information Science and Systems

Research activities in the Information Science and Systems area focus on advancing the state of the art in areas including information theory, coding theory, data compression, detection and estimation, receiver signal processing, networking coding and network information theory, multimedia security, secrecy systems, optimization techniques, robust control, adaptive control and control of multi-agent systems. Current research projects include both fundamental research in the above areas, as well as applied research. Typical applications are in communication networks, wireless networks, sensor networks, data storage systems, aircraft control, intelligent vehicular systems and robotics.
Course Requirements for Electrical Engineering

UNIVERSITY CORE CURRICULUM (27-41 hours)

US HISTORY and GOVERNMENT/POLITICAL SCIENCE (12 hours)
HIST 105, 106 (or approved sub)
POLS 206, 207

LANGUAGE, PHILOSOPHY and CULTURE (3 hours)
ENGR/PHIL 482

COMMUNICATION (6 hours)
ENGL 104
Communications elective

SOCIAL and BEHAVIORAL SCIENCES (3 hours)
Select from university approved list

CREATIVE ARTS (3 hours)
Select from university approved list

INTERNATIONAL & CULTURAL DIVERSITY (6 hours)
Select from university approved list

FOREIGN LANGUAGE (8 hours**)
Select from university approved list
** Not required if met in high school

MATHEMATICS and LIFE & PHYSICAL SCIENCES (32 hours)

MATH (17 hours)
MATH 151, 152, 251
MATH 308
MATH 311

SCIENCE (15 hours)
PHYS 218, 208, 222
CHEM 107/117 or 101/111 & 102/112

ELECTRICAL & COMPUTER ENGINEERING (69 hours)

ENGINEERING (8 hours)
ENGR 111, 112
CSCE 121
Technical Elective (see following page)

ECEN (61 hours)
ECEN 214, 248, 314, 322, 325, 303, 350, 370
ECEN 403/404 (Capstone/Senior Design)
ECEN electives (see following page)
Elective Options for Electrical Engineering

ECEN ELECTIVES (24 hours)

ANALOG & MIXED SIGNAL
ECEN 326, 453, 454, 457, 458, 474

BIOMEDICAL IMAGING, SENSING & GENOMIC SIGNAL PROCESSING
ECEN 410, 411, 412, 414, 419, 447, 451, 463

COMPUTER ENGINEERING & SYSTEMS
ECEN 424, 434, 449, 454, 468, 474, 475

DEVICE SCIENCE & NANOTECHNOLOGY
ECEN 440, 462, 464, 465, 472, 473, 477

ELECTRIC POWER SYSTEMS & POWER ELECTRONICS
ECEN 415, 438, 441, 442, 459, 460

ELECTROMAGNETICS & MICROWAVES
ECEN 410, 425, 445, 451, 452, 453, 463, 480

INFORMATION SCIENCE & SYSTEMS
ECEN 410, 419, 420, 422, 424, 444, 447, 448, 455, 478

TECHNICAL ELECTIVE (3 hours)

BIOL 113
ESET 352
ISEN 303
MATH 414, 442, 470, 471*
MEEN 221, 222, 315
MSEN 201, 460
PHYS 221**

* Choosing a 400-level MATH course for the technical elective allows EE students to earn a MATH minor

** Choosing a PHYS course for the technical elective plus one additional 300- or 400-level PHYS course allows EE students to earn a PHYS minor

EE students with a minimum 3.5 GPA who are interested in attending graduate school in our department have the option of participating in the Fast Track program, which allows them to earn up to 6 credit hours for coursework that applies to undergraduate and graduate programs for select classes. See advisors for more information.
ELEN-Electrical Engineering Degree Plan

Total credits required: 128
Catalog Edition: 138
Students entering 2015-16

FRESHMAN

<table>
<thead>
<tr>
<th>Cr</th>
<th>Th-Pr</th>
<th>Course Description</th>
</tr>
</thead>
</table>
| 2 | 1-3 | ENGR 111 - Foundations of Engr I
Calculus ready |
| 4 | 3-2 | MATH 151 - Engineering Math I
Calculus ready |
| 4 | 3-3 | PHYS 218 - Mechanics
Calculus ready |
| 3 | 3-0 | ENGL 104 - Composition and Rhetoric
No prerequisites |
| | | University Core Curriculum A
See university approved list |

SOPHOMORE

<table>
<thead>
<tr>
<th>Cr</th>
<th>Th-Pr</th>
<th>Course Description</th>
</tr>
</thead>
</table>
| 4 | 3-2 | CSCE 121 - Intro Prog, Design, Concepts
ENGR112 |
| 3 | 3-0 | MATH 251 - Engineering Math III
MATH152 |
| 4 | 3-3 | ECEN 248 - Digital System Design
ENGR111&12;PHYS208;CHEM107&117;MATH152 |
| | | University Core Curriculum A
See university approved list |

JUNIOR

<table>
<thead>
<tr>
<th>Cr</th>
<th>Th-Pr</th>
<th>Course Description</th>
</tr>
</thead>
</table>
| 3 | 3-0 | PHYS 222 - Modern Phys for Engrs
PHYS208;MATH306c |
| 3 | 3-1 | ECEN 314 - Signals and Systems
ECEN214;MATH308 |
| 3 | 3-1 | ECEN 322 - Electric and Magnetic Fields
ECEN214;PHYS208;MATH311 |
| 4 | 3-4 | ECEN 325 - Electronics
ECEN314c,MATH311 |
| | | Communications Elective B
See university approved list |

SENIOR

<table>
<thead>
<tr>
<th>Cr</th>
<th>Th-Pr</th>
<th>Course Description</th>
</tr>
</thead>
</table>
| 3 | 2-2 | ECEN 403 - Electrical Design Lab I
Comm Elec:ECEN303,314,322,325,350,370 |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ICD Elective A
See university approved list |

<table>
<thead>
<tr>
<th>Cr</th>
<th>Th-Pr</th>
<th>Course Description</th>
</tr>
</thead>
</table>
| 3 | 2-3 | ECEN 404 - Electrical Design Lab II
ECEN403 |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ECEN Elective C
See department approved list |
| | | ICD Elective A
See university approved list |

Notes

- **A** Students must select from: POLS 206 & 207 (3 cr each), American History (6 cr), Social and Behavioral Sciences Elective (3 cr), Creative Arts Elective (3 cr), and International and Cultural Diversity (ICD) Electives (6 cr). Some ICD Electives also count toward Creative Arts, Social and Behavioral Sciences or American History. See TAMU catalog for complete list of approved courses: http://catalog.tamu.edu/
- **B** Select from ENGL 210, COMM 205 or 243.
- **C** See advising office for list of approved electives
- **D** ENGR/PHIL 482 also fulfills the UCC Language, Philosophy & Culture requirement.

Courses in **bold** must be completed with a C or better.
Two years of the same foreign language/sign language (high school) or two semesters of the same foreign language (college) are required for graduation.
ECEN Electives for ELEN Majors

Students must complete a minimum of **SEVEN** courses and a minimum of **24** credits.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 415</td>
<td>Phys & Econ Oper of Sust Energy Sys</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 411</td>
<td>Intro to MRI and MRS</td>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td>ECEN 412</td>
<td>Ultrasound Imaging</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 414</td>
<td>Biosensors</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>ECEN 424</td>
<td>Fundamentals of Networking</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 449</td>
<td>Microprocessor System Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 454</td>
<td>Digital Integrated Circuit Design</td>
<td>3</td>
<td>2-2</td>
</tr>
</tbody>
</table>

ANALOG AND MIXED SIGNAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 457</td>
<td>Operational Amplifiers</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 458</td>
<td>Active Filter Analysis and Design</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 454</td>
<td>VLSI Circuit Design</td>
<td>3</td>
<td>3-3</td>
</tr>
</tbody>
</table>

BIOMEDICAL IMAGING, SENSING AND GENOMIC SIGNAL PROCESSING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 420</td>
<td>VLSI Circuit Design</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 410</td>
<td>Intro to VLSI Systems Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECEN 419</td>
<td>Genomic Signal Processing</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 447</td>
<td>Digital Image Processing</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 451</td>
<td>Antenna Engineering</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 463</td>
<td>Magnetic Resonance Engineering</td>
<td>3</td>
<td>2-3</td>
</tr>
</tbody>
</table>

COMPUTER ENGINEERING AND SYSTEMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 424</td>
<td>Advanced Logic Design</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 474</td>
<td>VLSI Circuit Design</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 475</td>
<td>Intro to VLSI Systems Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEVICE SCIENCE AND NANOTECHNOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 440</td>
<td>Microelectronic Circuit Fabrication</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 447</td>
<td>Microelectronic Device Design</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 477</td>
<td>Photonics: Fiber & Int Optics</td>
<td>3</td>
<td>3-3</td>
</tr>
</tbody>
</table>

ELECTRIC POWER SYSTEMS AND POWER ELECTRONICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 415</td>
<td>Phys & Econ Oper of Sust Energy Sys</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 438</td>
<td>Power Electronics</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 441</td>
<td>Electronic Motor Drives</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 444</td>
<td>Digital Integrated Circuit Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTROMAGNETICS AND MICROWAVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 410</td>
<td>Intro to Medical Imaging</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 425</td>
<td>RF & Microwave Engineering</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 455</td>
<td>Magnetic Resonance Engineering</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 480</td>
<td>RF & Microwave Wireless</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

INFORMATION SCIENCE AND SYSTEMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 410</td>
<td>Intro to Medical Imaging</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 419</td>
<td>Genomic Signal Processing</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 420</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 442</td>
<td>Control Engineering & Design</td>
<td>3</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 444</td>
<td>Digital Signal Processing</td>
<td>3</td>
<td>3-3</td>
</tr>
</tbody>
</table>

REQUIREMENTS

a. Students must take at least three courses from one area.
b. Students must take electives from at least two areas not selected in (a)

ADDITIONAL CONSIDERATIONS

- ELEN Students should view the advising course on eCampus to find the tentative course offerings for the upcoming academic year.
- In addition, a varying number of ECEN 489-Special Topics may be offered. Each course with a minimum of three credits may apply to one or more of the specialty areas, usually classified according to the professor's research area.
- Maximum total of three credits from ENGR 385 (Co-op), ECEN 485 (Directed Studies) and ECEN 491 (Research) may be counted towards the 24-credit ECEN electives, but they DO NOT replace any of the seven elective courses.
- Highlighted courses are offered in multiple research areas but may only be applied to one area for credit.
Technical Electives for ELEN Majors

BIOL 113 Essentials in Biology (3-3) 4 credits – One semester in introductory biology for non-majors; chemical basis of life, cellular and molecular biology, genetics, evolution, biodiversity and interaction of organisms with their environment; includes a laboratory to supplement and reinforce lecture topics.

ESET 352 Electronics Testing (3-3) 4 credits – Testing of electronic devices and systems; including test planning, test reporting, test specifications, parametric testing, measurement accuracy, test hardware, sampling theory, digital signal processing based testing, and calibrations; both circuit analysis (2/3) and circuit design (1/3) with several analog and mixed-signal systems. Prerequisites: ENTC 350 with a grade of C or better; completion of CBK courses with a grade of C or better; junior or senior in electronic systems engineering technology. Listed as ENTC 352 prior to 2015-16 catalog

ISEN 303 Engineering Economic Analysis (3-0) 3 credits – Principles of economic equivalence; time value of money; analysis of single and multiple investments; comparison of alternatives; capital recovery and tax implications; certainty; uncertainty; risk analysis; public sector analysis and break-even concepts. Prerequisite: MATH 152

MATH 414 Fourier Series and Wavelets (3-0) 3 credits – Fourier series and wavelets with applications to datacompression and signal processing. Prerequisites: MATH 304, MATH 309, MATH 311 or MATH 323

MATH 442 Mathematical Modeling (3-0) 3 credits – The construction of mathematical models from areas such as economics, game theory, integer programming, mathematical biology and mathematical physics. Prerequisites: MATH 304, MATH 309, MATH 311 or MATH 323; MATH 308 or equivalent

MATH 470 Communications and Cryptography I (3-0) 3 credits – Introduction to coded communications, digital signatures, secret sharing, one-way functions, authentication, error control and data compression. Prerequisites: MATH 304 or MATH 309 or MATH 311 or MATH 323; CSCE 110 or CSCE 111 or CSCE 121 or CSCE 206 or ENGR 112; approval of instructor

MATH 471 Communications and Cryptography II (3-0) 3 credits – Additional topics in coded communications; information and entropy, elliptical curves, error corrections, quantum methods. Prerequisites: MATH 470 or consent of instructor

MEEN 221 Statics and Particle Dynamics (3-0) 3 credits – Application of the fundamental principles of Newtonian mechanics to the statics and dynamics of particles; equilibrium of trusses, frames, beams, and other rigid bodies. Prerequisites: Admission to upper division in an engineering major; MATH 251 or 253 or registered therein; PHYS 218

MEEN 222 Materials Science (3-0) 3 credits – Mechanical, optical, thermal, magnetic and electrical properties of solids; differences in properties of metals, polymers, ceramics and composite materials in terms of bonding and crystal structure. Prerequisites: CHEM 102 or CHEM 104 and CHEM 114 or CHEM 107 and CHEM 117; PHYS 218

MEEN 315 Principles of Thermodynamics (3-0) 3 credits – Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work, and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles. Prerequisites: MEEN 221; MATH 251 or 253; U3 or U4 classification

MSEN 201(289) Engineering Materials: From Structure to Property (3-0) 3 credits – Origin of material properties from material structure and defects; electronic structure, atomic structure, crystal symmetry, and microstructure; emphasis on both functional and mechanical properties. Prerequisites: CHEM 102, 104, or 107; PHYS 218

MSEN 460(489) Electronic, Optical, and Magnetic Properties of Metal (3-0) 3 credits – Origins of functional materials properties from their electronic and molecular structure; electron theory in solids; electronic transport and dielectric behavior; atomic and mesoscopic origins of magnetism; optical properties; current applications of functional materials. Prerequisites: Intro to Materials Science course (MSEN 201, MEEN 222, CHEN 313, etc.) or approval of instructor; junior or senior classification

PHYS 221 Optics and Thermal Physics (3-0) 3 credits – Wave motion and sound, geometrical and physical optics, kinetic theory of gases, laws of thermodynamics. Prerequisites: PHYS 208; MATH 152 or 172; registration in MATH 221, 308

Note: AERO 320 approved as a Technical Elective for ELEN majors prior to fall 2014

Updated 03.30.15
UNIVERSITY CORE CURRICULUM (27-41 hours)

US HISTORY and GOVERNMENT/POLITICAL SCIENCE (12 hours)
HIST 105, 106 (or approved sub)
POLS 206, 207

LANGUAGE, PHILOSOPHY and CULTURE (3 hours)
ENGR/PHIL 482

COMMUNICATION (6 hours)
ENGL 104
Communications elective

SOCIAL and BEHAVIORAL SCIENCES (3 hours)
Select from university approved list

CREATIVE ARTS (3 hours)
Select from university approved list

INTERNATIONAL & CULTURAL DIVERSITY (6 hours)
Select from university approved list

FOREIGN LANGUAGE (8 hours**)
Select from university approved list
** Not required if met in high school

MATHEMATICS and LIFE & PHYSICAL SCIENCES (29 hours)

MATH (17 hours)
MATH 151, 152, 251
MATH 308
MATH 311

SCIENCE (12 hours)
PHYS 218, 208
CHEM 107/117 or 101/111 & 102/112

ELECTRICAL & COMPUTER ENGINEERING (72 hours)

ENGINEERING (23 hours)
ENGR 111, 112
CSCE 121, 221, 313, 315, 481
Engineering Elective (see following page)

ECEN (49 hours)
ECEN 214, 222, 248, 303, 314, 325, 350, 449, 454
ECEN 403/404 (Capstone/Senior Design)
Area electives (see following page)
Elective Options for Computer Engineering

AREA ELECTIVES (12 hours)

COMMUNICATIONS & NETWORKS
- CSCE 463, 464, 465
- ECEN 424, 434, 455, 478
- MATH* 470

INFORMATION
- CSCE 310, 436, 438, 444, 470
- ECEN 455

ROBOTICS/EMBEDDED SYSTEMS
- CSCE 420, 452, 456
- ECEN 420, 422

SIGNAL/IMAGE PROCESSING & GRAPHICS
- CSCE 441, 443
- ECEN 444, 447, 448

SOFTWARE SYSTEMS & ALGORITHMS
- CSCE 314, 410, 411, 431, 434, 435, 442, 465
- ECEN 434

VLSI (Very Large Scale Integration)
- ECEN 326, 468, 474, 475

ENGINEERING ELECTIVE (3 hours)

- BIOL 113
- MATH* 414, 442, 471
- MEEN 221, 222, 315
- PHYS 221, 222

* Choosing a 400-level MATH course for the engineering elective or area elective allows CE students to earn a MATH minor

CE students with a minimum 3.5 GPA who are interested in attending graduate school in our department have the option of participating in the Fast Track program, which allows them to earn up to 6 credit hours for coursework that applies to undergraduate and graduate programs for select classes. See advisors for more information.
CEEN-Computer Engineering Degree Plan

Total credits required: 128
Catalog Edition: 138
Students entering 2015-16

Name: __________________________
UIN: __________________________

FRESHMAN

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Th-Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 111</td>
<td>Foundations of Engr I</td>
<td>2</td>
<td>1-3</td>
</tr>
<tr>
<td>MATH 151</td>
<td>Engineering Math I</td>
<td>4</td>
<td>3-2</td>
</tr>
<tr>
<td>PHYS 218</td>
<td>Mechanics</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ENGL 104</td>
<td>Composition and Rhetoric</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

SOPHOMORE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Th-Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>Engineering Math III</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>CSCE 121</td>
<td>Intro Prog, Design, Concepts</td>
<td>4</td>
<td>3-2</td>
</tr>
<tr>
<td>CSCE/ECEN 222</td>
<td>Discrete Structures</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 248</td>
<td>Digital System Design</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>Communications Elective B</td>
<td></td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

JUNIOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Th-Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 313</td>
<td>Intro to Computer Systems</td>
<td>4</td>
<td>3-2</td>
</tr>
<tr>
<td>CSCE 481</td>
<td>Seminar</td>
<td>1</td>
<td>0-2</td>
</tr>
<tr>
<td>ECEN 314</td>
<td>Signals and Systems</td>
<td>3</td>
<td>3-1</td>
</tr>
<tr>
<td>ECEN 350</td>
<td>Comp Architecture and Design</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Topics in Applied Math I</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

SENIOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Th-Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 403</td>
<td>Electrical Design Lab I</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>Area Elective D</td>
<td></td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>Area Elective D</td>
<td></td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>Engineering Elective D</td>
<td></td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>ENGR/PHIL 482</td>
<td>Ethics and Engr E</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Th-Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 404</td>
<td>Electrical Design Lab II</td>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td>Area Elective D</td>
<td></td>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td>Area Elective D</td>
<td></td>
<td>3</td>
<td>2-3</td>
</tr>
</tbody>
</table>

A Students must select from: POLS 206 & 207 (3 cr each), American History (6 cr), Social and Behavioral Sciences Elective (3 cr), Creative Arts Elective (3 cr), and International and Cultural Diversity (ICD) Electives (6 cr). Some ICD Electives also count toward Creative Arts, Social and Behavioral Sciences or American History. See TAMU catalog for complete list of approved courses: http://catalog.tamu.edu/

B Select from ENGL 210, COMM 205 or 243.

C ECEN303 has a prerequisite of MATH508. STAT211 has a prerequisite of MATH152. Students intending to specialize in Communications are encouraged to take ECEN303.

D See advising office for list of approved electives

E ENGR/PHIL 482 also fulfills the UCC Language, Philosophy & Culture requirement.

Courses in **bold** must be completed with a C or better.

Two years of the same foreign language/sign language (high school) or two semesters of the same foreign language (college) are required for graduation.
Area Electives for CEEN Majors

Students must complete at least **TWO** courses in **TWO** different areas, for a minimum of **FOUR** courses.

COMMUNICATIONS AND NETWORKS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 463</td>
<td>Computer Networks</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 464</td>
<td>Wireless and Mobile Systems</td>
<td>CSCE313/U3/U4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 465</td>
<td>Computer and Network Security</td>
<td>CSCE313/U3/U4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ECEN 424</td>
<td>Fundamentals of Networking</td>
<td>ECEN303/STAT211</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ECEN 434</td>
<td>Optimization for ECEN</td>
<td>MATH251/MATH304/309/311</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 455</td>
<td>Digital Communications</td>
<td>ECEN314</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>CSCE 478</td>
<td>Wireless Communications</td>
<td>ECEN455/U3/U4</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>MATH 470</td>
<td>Comm & Cryptography</td>
<td>MATH304 or 323/CSCEN110</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

INFORMATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 310</td>
<td>Database Systems</td>
<td>CSCE211/221</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 436</td>
<td>Computer Human Interaction</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 438</td>
<td>Distributed Objects</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 444</td>
<td>Structures of Interactive Info</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 470</td>
<td>Information Storage & Retrieval</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>ECEN 455</td>
<td>Digital Communications</td>
<td>ECEN314</td>
<td>4</td>
<td>3-3</td>
</tr>
</tbody>
</table>

ROBOTICS/EMBEDDED SYSTEMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 420</td>
<td>Artificial Intelligence</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 452</td>
<td>Robotics</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 456</td>
<td>Real-Time Computing</td>
<td>ECEN248;MATH251;C or Ads</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 420</td>
<td>Linear Control Systems</td>
<td>ECEN314/MATH308</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 422</td>
<td>Control Engineering & Design</td>
<td>ECEN420</td>
<td>3</td>
<td>2-3</td>
</tr>
</tbody>
</table>

SIGNAL/IMAGE PROCESSING AND GRAPHICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 441</td>
<td>Computer Graphics</td>
<td>CSCE211/221</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 443</td>
<td>Game Development</td>
<td>CSCE441 or VIST486</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>ECEN 444</td>
<td>Digital Signal Processing</td>
<td>ECEN314</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 447</td>
<td>Digital Image Processing</td>
<td>ECEN314</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 448</td>
<td>Real Time Digital Signal Processing</td>
<td>ECEN444</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

SOFTWARE SYSTEMS AND ALGORITHMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCE 314</td>
<td>Programming Languages</td>
<td>CSCE221</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 410</td>
<td>Advanced OS</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 411</td>
<td>Design & Analysis of Algorithms</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 431</td>
<td>Software Engineering</td>
<td>CSCE315</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td>CSCE 434</td>
<td>Compiler Design</td>
<td>CSCE315</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CSCE 435</td>
<td>Parallel Computing</td>
<td>CSCE315/U3/U4</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>CSCE 442</td>
<td>Scientific Programming</td>
<td>C/C++/Fortran/MATH304c/308c</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td>ECEN 434</td>
<td>Optimization for ECEN</td>
<td>MATH251/MATH304/309/311</td>
<td>3</td>
<td>3-0</td>
</tr>
</tbody>
</table>

VERY LARGE SCALE INTEGRATION (VLSI)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECEN 326</td>
<td>Electronic Circuits</td>
<td>ECEN314&325</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 468</td>
<td>Advanced Logic Design</td>
<td>ECEN428</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 474</td>
<td>VLSI Circuit Design</td>
<td>ECEN326</td>
<td>4</td>
<td>3-3</td>
</tr>
<tr>
<td>ECEN 475</td>
<td>Intro to VLSI Systems Design</td>
<td>ECEN248&325</td>
<td>4</td>
<td>3-3</td>
</tr>
</tbody>
</table>

REQUIREMENTS
- Students must complete a minimum of four courses for CEEN Area Electives electives.
- Students must complete a minimum of two courses from two different areas.

ADDITIONAL CONSIDERATIONS
- Students should view the advising course on eCampus to find the tentative course offerings for the upcoming academic year.
- Additionally, a varying number of ECEN 489 - Special Topics may be offered. Each course will apply to one of the specialty areas, usually classified according to the professor’s research group.
- ECEN 485 - Directed Studies, and ECEN 491 - Research may count toward one of the four required electives if a minimum of three credit hours is earned.
Engineering Electives for CEEN Majors

BIOL 113 Essentials in Biology (3-3) 4 credits – One semester in introductory biology for non-majors; chemical basis of life, cellular and molecular biology, genetics, evolution, biodiversity and interaction of organisms with their environment; includes a laboratory to supplement and reinforce lecture topics.

MATH 414 Fourier Series and Wavelets (3-0) 3 credits – Fourier series and wavelets with applications to data compression and signal processing. Prerequisites: MATH 304, MATH 309, MATH 311 or MATH 323

MATH 442 Mathematical Modeling (3-0) 3 credits – The construction of mathematical models from areas such as economics, game theory, integer programming, mathematical biology and mathematical physics. Prerequisites: MATH 304, MATH 309, MATH 311 or MATH 323; MATH 308 or equivalent

MATH 471 Communications and Cryptography II (3-0) 3 credits – Additional topics in coded communications; information and entropy, elliptical curves, error corrections, quantum methods. Prerequisites: MATH 470 or consent of instructor

MEEN 221 Statics and Particle Dynamics (3-0) 3 credits – Application of the fundamental principles of Newtonian mechanics to the statics and dynamics of particles; equilibrium of trusses, frames, beams, and other rigid bodies. Prerequisites: Admission to upper division in an engineering major; MATH 251 or 253 or registered therein; PHYS 218

MEEN 222 Materials Science (3-0) 3 credits – Mechanical, optical, thermal, magnetic and electrical properties of solids; differences in properties of metals, polymers, ceramics and composite materials in terms of bonding and crystal structure. Prerequisites: CHEM 102 or CHEM 104 and CHEM 114 or CHEM 107 and CHEM 117; PHYS 218

MEEN 315 Principles of Thermodynamics (3-0) 3 credits – Theory and application of energy methods in engineering; conservation of mass and energy; energy transfer by heat, work, and mass; thermodynamic properties; analysis of open and closed systems; the second law of thermodynamics and entropy; gas, vapor and refrigeration cycles. Prerequisites: MEEN 221; MATH 251 or 253; U3 or U4 classification

PHYS 221 Optics and Thermal Physics (3-0) 3 credits – Wave motion and sound, geometrical and physical optics, kinetic theory of gases, laws of thermodynamics. Prerequisites: PHYS 208; MATH 152 or 172; registration in MATH 221, 308

PHYS 222 Modern Physics for Engineers (3-0) 3 credits – Atomic, quantum, relativity and solid state physics. Prerequisites: PHYS 208 or PHYS 219; MATH 308 or registration therein

Note: MATH 470 approved as an Engineering Elective for CEEN majors prior to fall 2013; AERO 320 approved as an Engineering Elective for CEEN majors prior to fall 2014

Updated 03.30.15
Are you taking dual credit courses?

Are you a transfer student?

For information on transfer credits, visit: http://bit.ly/1sdEarn

Visit dars.tamu.edu for information about testing, such as departmental credit by exam, CLEP, AP, SAT, ACT, MPE, ELPE, etc.

AP TEST

<table>
<thead>
<tr>
<th>Subject</th>
<th>Minimum Score</th>
<th>Course Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>4</td>
<td>ARTS 150</td>
</tr>
<tr>
<td>Calculus AB<sup>1</sup></td>
<td>4</td>
<td>MATH 151</td>
</tr>
<tr>
<td>Calculus BC<sup>1</sup></td>
<td>3,4</td>
<td>MATH 151; MATH 151 & 152</td>
</tr>
<tr>
<td>Chemistry<sup>2</sup></td>
<td>3,4</td>
<td>CHEM 101/111; CHEM 107/117</td>
</tr>
<tr>
<td>Macroeconomics</td>
<td>4</td>
<td>ECON 203 (Social Science)</td>
</tr>
<tr>
<td>Microeconomics</td>
<td>4</td>
<td>ECON 202 (Social Science)</td>
</tr>
<tr>
<td>English Language & Composition</td>
<td>3</td>
<td>ENGL 104</td>
</tr>
<tr>
<td>English Literature & Copmosition</td>
<td>3</td>
<td>ENGL 104</td>
</tr>
<tr>
<td>Human Geography</td>
<td>3</td>
<td>GEOG 201 (Social Science & ICD)</td>
</tr>
<tr>
<td>Physics - Mechanics<sup>3</sup></td>
<td>3</td>
<td>PHYS 218</td>
</tr>
<tr>
<td>Physics - Electricity<sup>3</sup></td>
<td>3</td>
<td>PHYS 208</td>
</tr>
<tr>
<td>Psychology</td>
<td>3</td>
<td>PSYC 107 (Social Science)</td>
</tr>
<tr>
<td>US Government & Politics</td>
<td>3</td>
<td>POLS 206</td>
</tr>
<tr>
<td>US History</td>
<td>4</td>
<td>HIST 105 & 106</td>
</tr>
</tbody>
</table>

¹ECEN students who earn a 4 or 5 on the Calculus AB exam or a 3 or 4 on the BC exam are encouraged to begin with MATH 151 at TAMU. Students who earn a 5 on the BC exam may begin with MATH 151 or 152.

²ECEN students are required to take CHEM 107/117; however, they may substitute with CHEM 101/111 & 102/112.

³ECEN students should only accept credit for PHYS 218 if they earn a 5 on the AP exam, and they are encouraged to take PHYS 208 rather than accept AP credit for this course.
Helpful Links on Campus and Around Aggieland

- 12thman.com - Links to Aggie athletic organizations, ticket information, etc.
- admissions.tamu.edu - Application information and deadlines
- bit.ly/1sdEarn - Transfer equivalency information
- careercenter.tamu.edu - Career planning, resume and interview skills, jobs, etc.
- catalog.tamu.edu - Degree plans and course descriptions
- codemaroon.tamu.edu - Emergency information and notifications
- corps.tamu.edu - Corps of Cadets website and links to Corps organizations
- dars.tamu.edu - Testing information and registration
- ece.tamu.edu - Department website, including links to social media accounts
- engineering.tamu.edu - College of Engineering website
- financialaid.tamu.edu - Scholarship and financial aid information
- honors.tamu.edu - University Honors department website
- iss.tamu.edu - Information for international students
- jobsforaggies.tamu.edu - Student employment opportunities on- and off-campus
- mscopas.org - Information, calendar and tickets for performances at Rudder Theater
- newaggie.tamu.edu - Information for future Aggies and parents
- ocatamu.weebly.com - Off-Campus Aggies housing information
- registrar.tamu.edu - Academic calendar, registration schedule, forms, etc.
- reslife.tamu.edu - On-campus housing information
- sbs.tamu.edu - Student Business Services website with tuition information and deadlines
- studentactivities.tamu.edu - Information on all official student organizations on campus
- studyabroad.tamu.edu - Study Abroad programs and scholarships
- tamu.bncollege.com - Official TAMU bookstore website, including TAMU gifts and gear
- tamu.edu - University website, including links to all things TAMU
- visitaggieland.com - Bryan-College Station visitors bureau website
- visit.tamu.edu - Campus, college and departmental tour registration

ECE Informational Events

- Aggieland Saturday - Campus-wide Open House with presentations, lab tours, student organizations, and more
- Demo Day - Senior Design project demonstrations and presentations
- Engineering 111/112 Nights - Informational session including all departments from the College of Engineering
- Pizza Nights - Presentations related to Electrical & Computer Engineering...and free pizza!