Abstract

Near-future space missions demand the delivery of massive payloads to deep space destinations. Given foreseeable propulsion technology, this is feasible only if we can design trajectories that require the smallest possible propulsive energy input. This research aims to design interplanetary space missions by using new low-energy trajectory methods that take advantage of the natural dynamics of the solar system. This energy efficient trajectory technology, called the Interplanetary Super Highway (IPSH), allows long duration space missions with minimum fuel requirements. To develop the IPSH trajectory design method, invariant manifolds of the three-body problem are used. The invariant manifolds, which are tube-like structures that issue from the periodic orbits around the L_1 and L_2 Lagrangian points, can be patched together to achieve voyages of immense distances, while the spacecraft may expend little or no energy. In the present work, dynamical symmetries are used to develop computationally simplified methods for IPSH trajectory designs.

These streamlined IPSH trajectory design methods would be useful in designing many types of interplanetary missions. As one of its applications, my research is focused on Near-Earth Asteroids (NEAs) rendezvous mission design for exploration, mitigation, and mining. In a second application study, a solar sail mission for Mars exploration is considered. By using the solar radiation pressure, the solar sails provide a propulsive power. This thrust affects the three-body system dynamics such that the Sun-Mars L_1 and L_2 Lagrangian points are shifted toward the Sun and the geometry of the invariant manifolds around L_1 and L_2 points is changed. By taking advantage of these features, a low-energy trajectory for Mars exploration is developed.

Hyerim Kim is a PhD candidate in the Aerospace Engineering Department working under the supervision of Professor David C Hyland. Her research interests are in the areas of space mission design and multi-body dynamics. She co-founded in January 2012 the Scientific Preparatory Academy for Cosmic Explorers (SPACE), a nonprofit company located on the Isle of Man.