PETE 636 Horizontal, Multilateral and Intelligent Wells

Textbook Required: Multilateral Wells
A. D. Hill, Ding Zhu and Michael J. Economides

Course Lecture Schedule

1/19 Introduction, course outline, method of study
 Assignment: Read Chapter 3 and 4

1/21 Horizontal well application, drilling and completion
 Assignment: Read Chapter 5

No class on 1/25

1/27 Horizontal well performance model: Steady State
 Joshi model, Furui model
 Assignment 1: Joshi and Furui’s model for productivity calculation

2/1 Steady-state model discussion

2/3 Horizontal well performance model: Pseudo Steady-State
 Babu and Odeh model

2/8 Geometry parameter effect on well performance
 Assignment 2: Baba and Odeh model for productivity calculation

2/15 Gas well model and two-phase correlation

2/17 Flow in pipe: single phase and two-phase pressure drop
 Assignment 3: Wellbore pressure calculation

2/22 Segment model of horizontal well performance
 Assignment 4: segment model

Project 1 due (30%)

2/24 Horizontal well completion: formation damage model
Horizontal well completion design and selection
Multilateral well applications, junction classification
Assignment 5: field case study (Project 2)
Multilateral productivity calculation

Midterm (40%)

- Cross flow and flow control in multilateral wells
- Intelligent completion for optimization: ICD/ICV
- Intelligent completion: monitoring flow
- Reservoir and well optimization by intelligent completion
- Source solution for complex geometry systems

Horizontal well acidizing
Horizontal well acidizing
Horizontal well fracturing: transverse/longitudinal
Horizontal well fracturing: multiple stage placement
Horizontal well fracturing: complex fracture network system

Project 2 due (40%)

- Project presentation
- Project presentation

Grading system

- Project 1: 30%
- Midterm: 30%
- Project 2: 40%